813 research outputs found
More on the Narrowing of Impact Broadened Radio Recombination Lines at High Principal Quantum Number
Recently Alexander and Gulyaev have suggested that the apparent decrease in
impact broadening of radio recombination lines seen at high principal quantum
number n may be a product of the data reduction process, possibly resulting
from the presence of noise on the telescope spectra that is not present on the
calculated comparison spectra. This is an interesting proposal. However, there
are serious problems with their analysis that need to be pointed out. Perhaps
the most important of these is the fact that for principal quantum numbers
below n = 200, where the widths are not in question, their processed generated
profile widths do not fit the widths of the processed lines obtained at the
telescope. After processing, the halfwidths of the generated and telescope
profiles must agree below n = 200 if we are to believe that the processed
generated linewidths above n = 200 are meaningful. Theirs do not. Furthermore,
we find that after applying the linewidth reduction factors found by Alexander
and Gulyaev for their noise added profiles to our generated profiles to
simulate their noise adding effect, the processed widths we obtain still do not
come close to explaining the narrowing seen in the telescope lines for n values
in the range 200 < n < 250. It is concluded that what is needed to solve this
mystery is a completely new approach using a different observing technique
instead of simply a further manipulation of the frequency-switched data.Comment: Six pages with 4 figures. Accepted for publication in Astrophysics
and Space Scienc
Bond-orientational ordering and shear rigidity in modulated colloidal liquids
From Landau-Alexander-McTague theory and Monte-Carlo simulation results we
show that the modulated liquid obtained by subjecting a colloidal system to a
periodic laser modulation has long range bond-orientational order and non-zero
shear rigidity. From infinite field simulation results we show that in the
modulated liquid phase, the translational order parameter correlation function
decays to zero exponentially while the correlation function for the
bond-orientational order saturates to a finite value at large distances.Comment: 8 pages, elsart documentclass, to be published in Physica A as part
of proceedings for Stat-Phys 3, Calcutt
The lives of FR I radio galaxies
After a brief introduction to the morphological properties of FRI radio
sources, we discuss the possibility that FRI jets are relativistic at their
bases and decelerate quickly to non-relativistic velocities. From two-frequency
data we determine spectral index distributions and consequently the ages of FRI
sources. We show that in the large majority of cases synchrotron theory
provides unambiguous and plausible answers; in a few objects re-acceleration of
electrons may be needed. The derived ages are of the order 10^7-10^8 years, 2-4
times larger than the ages inferred from dynamical arguments and a factor 5-10
larger than the ages of FRII sources. The linear sizes of FRI and FRII sources
make it unlikely that many FRII's evolve into FRI's. A brief discussion is
given of the possibility that radio sources go through different cycles of
activity.Comment: 19 pages, including 13 figures, to appear in `Life Cycles of Radio
Galaxies', ed. J. Biretta et al., New Astronomy Review
Recent Progress on Ammonia Cracking Technologies for Scalable Hydrogen Production
The global energy transition necessitates the development of technologies enabling cost-effective and scalable conversion of renewable energies into storable and transportable forms. Green ammonia, with its high hydrogen storage capacity, emerges as a promising carbon-free hydrogen carrier. This article reviews recent progress in industrially relevant catalysts and technologies for ammonia cracking, which is a pivotal step in utilizing ammonia as a hydrogen storage material. Catalysts based on Ru, Ni, Fe, Co, and Fe-Co are evaluated, with Co-based catalysts showing exceptional potential for ammonia cracking. Different reactor technologies and their applications are briefly discussed. This review concludes with perspectives on overcoming existing challenges, emphasizing the need for catalyst development, effective reactor design, and sustainable implementation in the context of the energy transition
Improved antitumor response to isolated limb perfusion with tumor necrosis factor after upregulation of endothelial monocyte-activating polypeptide II in soft tissue sarcoma
BACKGROUND: Experiments with tumor necrosis factor alpha (TNF) in rodents
have shown that a high dose can lead to hemorrhagic necrosis in tumors.
Endothelial monocyte-activating polypeptide II (EMAP-II) is a novel
tumor-derived cytokine, and its expression increases the TNF-1 receptor on
tumor endothelium, enhances the induction of tissue factor on tumor
endothelial cells, and has an antiangiogenic effect. It has recently been
shown that in vivo sensitivity of tumor vasculature to TNF is determined
by tumor production of EMAP-II. METHODS: We measured the level of EMAP-II
in a TNF-resistant soft tissue sarcoma. We subsequently
stabile-transfected this cell line with a retroviral construct containing
the EMAP gene. In an extremity perfusion model in tumor-bearing rats, we
measured response rates to TNF therapy. RESULTS: Functional EMAP-II
production was increased after this transfection. Immunostaining of
paraffin-embedded tumor tissue sections in rats showed an overexpression
of human EMAP-II. Results of the TNF perfusions in rats suggest that this
tumor is more sensitive to TNF therapy. CONCLUSIONS: EMAP-II is produced
in various levels. One can increase the sensitivity of tumor for TNF
therapy in vivo by upregulating the EMAP-II production. This result leaves
an opportunity for enhanced TNF response of tumors in future settings
Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations
The approach of the elastic continuum limit in small amorphous bodies formed
by weakly polydisperse Lennard-Jones beads is investigated in a systematic
finite-size study. We show that classical continuum elasticity breaks down when
the wavelength of the sollicitation is smaller than a characteristic length of
approximately 30 molecular sizes. Due to this surprisingly large effect
ensembles containing up to N=40,000 particles have been required in two
dimensions to yield a convincing match with the classical continuum predictions
for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk
systems. The existence of an effective length scale \xi is confirmed by the
analysis of the (non-gaussian) noisy part of the low frequency vibrational
eigenmodes. Moreover, we relate it to the {\em non-affine} part of the
displacement fields under imposed elongation and shear. Similar correlations
(vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
Structure, Stresses and Local Dynamics in Glasses
The interrelations between short range structural and elastic aspects in
glasses and glass forming liquids pose important and yet unresolved questions.
In this paper these relations are analyzed for mono-atomic glasses and stressed
liquids with a short range repulsive-attractive pair potentials. Strong
variations of the local pressure are found even in a zero temperature glass,
whereas the largest values of pressure are the same in both glasses and
liquids. The coordination number z(J) and the effective first peak radius
depend on the local pressures J's. A linear relation was found between
components of site stress tensor and the local elastic constants. A linear
relation was also found between the trace of the squares of the local
frequencies and the local pressures. Those relations hold for glasses at zero
temperature and for liquids. We explain this by a relation between the
structure and the potential terms. A structural similarity between liquids and
solids is manifested by similar dependencies of the coordination number on the
pressures.Comment: 7 pages, 11 figure
Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients
After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3–5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.</p
Dynamics of a deformable self-propelled particle under external forcing
We investigate dynamics of a self-propelled deformable particle under
external field in two dimensions based on the model equations for the center of
mass and a tensor variable characterizing deformations. We consider two kinds
of external force. One is a gravitational-like force which enters additively in
the time-evolution equation for the center of mass. The other is an
electric-like force supposing that a dipole moment is induced in the particle.
This force is added to the equation for the deformation tensor. It is shown
that a rich variety of dynamics appears by changing the strength of the forces
and the migration velocity of self-propelled particle
- …