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Bond-orientational ordering and shear rigidity

in modulated colloidal liquids
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Abstract

From Landau-Alexander-McTague theory and Monte-Carlo simulation results we
show that the modulated liquid obtained by subjecting a colloidal system to a peri-
odic laser modulation has long range bond-orientational order and non-zero shear
rigidity. From infinite field simulation results we show that in the modulated liquid

phase, the translational order parameter correlation function decays to zero expo-
nentially while the correlation function for the bond-orientational order saturates
to a finite value at large distances.
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1 Introduction

Consider a 2-d charge stabilized colloidal system subject to a one-dimensionally
modulated stationary laser field (obtained by superposing two beams). Chowd-
hury, Ackerson and Clark [1] found that when the wave-vector of the laser
modulation is tuned to be half the wave-vector q0 at which the structure factor
of the colloidal liquid shows its first peak, above a certain laser field inten-
sity, the system freezes into a 2-D triangular crystal. This phenomena of laser
induced freezing (LIF) has been studied subsequently by experiments [2-4],
simulations[5-7] and density functional calculations [8-10]. For field strengths
below the value at which the system undergoes freezing, the laser field in-
duces a density modulation with wave-vector q0 in the liquid, and this phase
has been called modulated liquid in the literature. In this paper we show that
the modulated liquid has rather interesting properties. Specifically the in-
duced translational order generates a field conjugate to the bond-orientational
order parameter. Hence the ”modulated liquid” has a non-zero value of bond-
orientational order parameter, and consequently a finite rigidity (shear mod-
ulus). We first present a qualitative picture in terms of a generalized Landau-
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Alexander-McTague [11] theory and substantiate the picture with results from
a detailed Monte-Carlo simulation.

2 Mean-field treatment

From general symmetry grounds the coarse-grained free energy functional in
two dimensions in the presence of an external field Ve, coupled to one of the
six density Fourier modes (ρ ~G1

) characterizing a 2-D crystal has the form [12]:

F =−2Veρ ~G1
+

1

2
rT

∑

~G

|ρ ~G|
2

+wT

∑

~G+ ~G′+ ~G′′=0

ρ ~Gρ ~G′ρ ~G′′ + uT (
∑

~G

|ρ ~G|
2)2 + u′T

∑

~G

|ρ ~G|
4 + ...

+
1

2
r6|ψ6|

2 + u6|ψ6|
4 + ...

+γ
∑

~G

|ρ ~G|
2[ψ6(Gx − iGy)

6 + ψ∗
6(Gx + iGy)

6]; (1)

where the summations run over all the wave-vectors forming the first shell
of the reciprocal lattice vector of the triangular lattice into which the colloid
freezes and ψ6 is the bond-orientational order parameter.
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Notations:

ρ1 ≡ ρ ~G1
≡ ρ− ~G1

ρ2 ≡ ρ ~G2
≡ ρ ~G3

≡ ρ− ~G2
≡ ρ− ~G3

Fig. 1. Density Fourier modes for 2-D triangular crystal.

In the absence of external field, for large positive values of rT and r6, the
free energy is minimum when all order parameters are zero (ie. for the liquid
phase). If, as a consequence of a change in temperature, screening length or
some other parameter, rT decreases much faster than r6, then because of the
cubic term in equation (1) one gets a first order freezing transition into a
crystalline phase. On the other hand, if r6 decreases much faster than rT ,
one gets a continuous transition to an orientationally ordered hexatic phase,
characterized by nonzero values of ψ6 and zero values of ρ ~G.

The external field induces a non-zero ρ ~G1
even in the liquid phase. The non-

zero value of ρ ~G1
leads to an effective field conjugate to the bond-orientational

order through the coupling γ in eqn. 1. So ψ6 is also turned on as the ex-
ternal field is applied. Since the external field modulation fixes the directions
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in which the order develops, we can treat the order parameters as real num-
ber to get the equilibrium phase diagram (the phase in the order parameters
will be important in determining the elastic coefficients but not in determin-
ing the stable equilibrium phase). The experimental systems and the earlier
simulations referred to above [1-7] corresponded to volume fraction and salt
concentration values such that the zero field freezing transition was first or-
der; hence they presumably correspond to rT ≤ r6. Even if r6 is much smaller
than rT , such that the freezing mechanism at zero external field is a two stage
transition with the first (continuous) transition being to the hexatic phase,
the external field will immediately destroy the intervening hexatic phase.

Fig. 2. Values of the translational and orientational order parameters as a function
of external field in Landau-Alexander-McTague theory

Choosing the coefficients rT = r6 = 0.30, wT = −1/3, uT = u6 = 1.5, u′T = 0.5
and γ = −0.7 numerical minimization of eqn. 1 gives the order parameter pro-
file as a function of external field shown in Fig. 2. ψ6 and ρ ~G1

becomes nonzero
as soon as Ve is turned on, and at Ve = 0.0239 all the order parameters jump
simultaneously signifying a first order transition to a crystalline structure.

One can define a rigidity modulus in analogy to the helicity modulus in su-
perfluids [13]:

Y = lim
q→0

1

q2

∂2F

∂2~q
, (2)

where we consider an field coupled to the orientational order parameter as
ψ6(~r) −→ ψ6(~r)e

i~q.~r. The free-energy cost for such a field will depend on the
gradient term in ψ6 (not included in eqn. 1). To leading order such a term
would predict Y ∼ V 4

e as |q| → 0.
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3 Monte-Carlo Simulations

3.1 Simulation details

Since the parameters in eqn. 1 are phenomenological and there is no direct
way to fix them to characterize the experimental system, we have performed
Monte-Carlo simulations to study the modulated liquid phase. We have con-
sidered a 2-D system of charge stabilized colloidal particles (with diameter

2R = 1.07µm) confined in a rectangular box of size
√

3

2
asL × asL with peri-

odic boundary conditions and subjected to an external potential of the form
U(~r) = −Vecos(q0x), with q0 = 2π/(

√
3

2
as), where as is the mean inter-particle

separation. The inter-particle interaction is modeled by the DLVO potential:

Uij(r) =
(Ze)2

ǫ
(
exp(κR)

1 + κR
)2
exp(−κrij)

|rij|
(3)

Here Ze (Z = 7800) is the effective surface charge, ǫ (=78) is the dielectric
constant of the solvent and κ is the inverse of the Debye screening length due to
the small ions (counterions and impurity ions) in the solvent. The parameters
are the same as in earlier simulation studies and similar to the experiments
[1].

To study the effect of very large external field (infinite field), in some of the
simulations we had fixed the particles in parallel lines defined by the potential
minima. Though the particles move freely only along the lines, they interact
in full two dimensional space. The resulting simplification allows us to simu-
late systems with L as large as 100, which allows us to compute correlation
functions at large distances.

The translational order parameters are defined by:

ρ ~G =<
1

N

∑

i

ei ~G.~ri > . (4)

G1 refers to the direction parallel to the modulation wave-vector [ 2π√
3/2as

(1, 0)],

while G2 refers to the other independent wave-vector [ 2π√
3/2as

(1

2
,
√

3

2
)] forming

the first shell of wave-vectors of the triangular lattice. Value of ρ ~G as defined
in eqn.(4) depends on the coordinate origin. So we measure the translational

order parameter as ρ ~G =< 1

N

√

[
∑

i cos( ~G.~ri)]2 + [
∑

i sin( ~G.~ri)]2 > [14]. This
quantity is of order unity in crystalline state, while in liquid this goes to zero
as 1√

N
for a system of N particles.
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We define the bond-orientational order parameter as:

Ψ6 =<
1

N

∑

m

1

zm

∑

n

e6iθm,n >, (5)

where θm,n is the angle made by the line joining the position of particle m to
the neighboring particle n, measured with respect to some fixed direction. zm

is the number of neighbors corresponding to the Voronoi cell of particle m.

To calculate order parameter correlation functions we define local order pa-
rameters ρ ~G( ~rm) = 1

zm+1
[ei ~G. ~rm +

∑

n e
i ~G. ~rn] and ψ6( ~rm) = 1

zm

∑

n e
6iθm,n , where

the order parameters are defined at the position of a particle m, and n de-
notes the particles forming the Voronoi cell of particle m. The order parameter
correlation functions are defined as,

GT (~r)=< ρ∗~G(~r)ρ ~G(0) >, (6)

G6(~r)=< ψ∗
6(~r)ψ6(~0) > . (7)

To measure the helicity modulus Y , we have applied ”anti-periodic” bound-
ary condition along the x direction. In case of the standard periodic boundary
condition, one repeats the simulation cell throughout space for calculating the
inter-particle potential and to put back the particle inside the simulation box
once it moves out in the course of the simulation. In case of the ”anti-periodic”
boundary condition, in the x direction for example, successive imaginary re-
peat boxes are shifted by half the lattice spacing in the y-direction. Equiva-
lently, while folding back a particle that exits from the simulation box in the
±x direction, a displacement ±1

2
asŷ is applied. The change in energy between

periodic and ”anti-periodic” boundary conditions gives a measure of Y .

3.2 results

The specific heat in figure 3 (a) shows a peak as function of βVe signifying
a phase transition at βVe = 0.25. In figure 3(b) we present order parameters
for L = 20 and κas = 15.5 (where the system is liquid for zero external field)
as a function of βVe. The translational order parameters ρ1 and ρ2 are non-
zero even in the liquid phase because of the finite system size. Also they seem
to grow continuously. But a finite-size scaling analysis shows that the results
are consistent with first order transition scenario with small discontinuity in
energy [7]. In addition to ρ1, Ψ6 also shows non-zero value as soon as the
external field is switched on as expected from the coarse-grained free energy.

In figure 4, we plot ρ2 and Ψ6 for infinite field and 104 particle system (L =
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Fig. 3. (a) Specific heat, and (b) Order parameters, obtained from Monte-Carlo
simulations of a 400 particle system as a function of βVe. κas was chosen to be 15.5
for these simulations, such that the system is in liquid state in absence of external
field

Fig. 4. ρ ~G2
and Ψ6 across the melting transition for infinite field and 10000 particles

100) as a function of κas. While the translational order parameter shows a
sharp fall at the melting transition (κas = 15.6), the bond-orientational order
parameter remains large and finite.

In figure 5 we plot the order parameter correlation functions in the crystalline
region(5.a) and in the liquid region (5.b). In crystalline region GT (y) decays
as a power law, while G6(y) saturates to a constant value. In the liquid region,
while GT (y) decays to zero exponentially at large distances, G6(y) still remain
finite.

In figure 6 we have shown the difference in energy in units of kBT per parti-
cle for anti-periodic and periodic boundary conditions. We have considered a
system with L = 10 in order to have a measurable enegy difference because
of the large shear. The system freezes around βVe = 0.2. From figure 6 we
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Fig. 5. Translational and bond-orientational correlation functions along the external
field minima (y axis) from simulation of 10000 particles and infinite field

Fig. 6. Energy difference between anti-periodic and periodic boundary conditions

find that there is a non-zero elastic energy cost and hence a non-zero shear
modulus even before the system freezes to crystalline structure. At βVe = 0.2,
there is a sharp change in ∆E, which then saturates.

4 Conclusion

We have shown that the modulated liquid phase obtained by inducing density
modulation in a colloidal liquid by subjecting it to external laser modula-
tions has properties intermediate between crystal and liquid; specifically par-
tial translational order, finite bond-orientational order, and non-zero rigidity
modulus. In two dimensional freezing, a large part of the loss of entropy upon
freezing is due to the bond-orientational ordering. In LIF, the fact that the
freezing transition occurs from a partially bond-orientationally ordered phase
to a crystalline phase, helps one to understand why the transition becomes
more weakly first order as the external field strength is increased.
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