3,498 research outputs found

    A Case Report of Incidental Primary Leiomyosarcoma of the Fallopian Tube and a Review of the Recent Literature

    Get PDF
    Primary leiomyosarcoma of the fallopian tube is a very rare neoplasm with descriptions limited to case reports. We present the case of a 46-yr-old woman with a history of renal transplantation in whom a primary leiomyosarcoma of the fallopian tube was identified incidentally following hysterectomy and bilateral salpingectomy undertaken for a uterine fibroid. The tumor demonstrated classic morphological and immunohistochemical features of a leiomyosarcoma. It appeared localized to the fallopian tube and was completely resected. Adjuvant therapy was not given but active surveillance initiated. After 14 mo of follow-up, there was no evidence of disease recurrence. We review cases from the past 20 yr with a focus on management and outcomes. Given the rarity of this disease, continued publication of case reports and the creation of a centralized case registry would be of benefit

    The combined immunohistochemical expression of AMBRA1 and SQSTM1 identifies patients with poorly differentiated cutaneous squamous cell carcinoma at risk of metastasis: A proof of concept study

    Get PDF
    \ua9 2024 AMLo Biosciences Ltd. Journal of Cutaneous Pathology published by John Wiley & Sons Ltd.Background: Cutaneous squamous cell carcinoma (cSCC) incidence continues to increase globally with, as of yet, an unmet need for reliable prognostic biomarkers to identify patients at increased risk of metastasis. The aim of the present study was to test the prognostic potential of the combined immunohistochemical expression of the autophagy regulatory biomarkers, AMBRA1 and SQSTM1, to identify high-risk patient subsets. Methods: A retrospective cohort of 68 formalin-fixed paraffin-embedded primary cSCCs with known 5-year metastatic outcomes were subjected to automated immunohistochemical staining for AMBRA1 and SQSTM1. Digital images of stained slides were annotated to define four regions of interest: the normal and peritumoral epidermis, the tumor mass, and the tumor growth front. H-score analysis was used to semi-quantify AMBRA1 or SQSTM1 expression in each region of interest using Aperio ImageScope software, with receiver operator characteristics and Kaplan–Meier analysis used to assess prognostic potential. Results: The combined loss of expression of AMBRA1 in the tumor growth front and SQSTM1 in the peritumoral epidermis identified patients with poorly differentiated cSCCs at risk of metastasis (*p < 0.05). Conclusions: Collectively, these proof of concept data suggest loss of the combined expression of AMBRA1 in the cSCC growth front and SQSTM1 in the peritumoral epidermis as a putative prognostic biomarker for poorly differentiated cSCC

    Use of Cell Viability Assay Data Improves the Prediction Accuracy of Conventional Quantitative Structure–Activity Relationship Models of Animal Carcinogenicity

    Get PDF
    BackgroundTo develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem.ObjectivesWe have explored these data in terms of their utility for predicting adverse health effects of the environmental agents.Methods and resultsInitially, the classification k nearest neighbor (kNN) quantitative structure–activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP–HTS studies. We found that compounds classified by HTS as “actives” in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS “inactives” were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors.ConclusionsOur studies suggest that combining NTP–HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology

    Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy

    Get PDF
    Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours

    Plasma levels of apelin are reduced in patients with liver fibrosis and cirrhosis but are not correlated with circulating levels of bone morphogenetic protein 9 and 10

    Get PDF
    Background: The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. Methods: Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. Results: Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with β-blockers. Conclusions: Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use

    The effect of experimental hyperoxia on erythrocytes’ oxygen-transport function

    Get PDF
    The aim of this study was to investigate the effect of hyperoxia, calcium ions and pH value on the composition of major phospholipids in human erythrocyte membranes and erythrocytes’ oxygen-transport function. To create a model of hyperoxia, we saturated the incubated mixture with oxygen by constant passing of oxygen–air mixture through the incubation medium. To assess the effect of elevated calcium ion concentrations, CaCl2 was added to the incubation medium. An incubation medium with different pH was used to study the effect of various pH values. Lipids were extracted from erythrocytes and chromatographic separation was carried out in a thin layer of silica gel deposited on a glass plate. The thiobarbituric acid (TBA)-active products and the content of diene conjugates (DC) in erythrocytes were determined. The oxygen-binding capacity of haemoglobin was evaluated using Raman spectroscopy. The obtained results indicated that hyperoxia causes deep changes both in the composition and character of bilayer lipids of erythrocyte membranes, which affects the functional characteristics of erythrocytes, primarily the oxygen-transport properties of erythrocyte haemoglobin. It should be noted that a combination of Ca2+ ions and change in the pH value intensify the processes associated with disruption of phospholipids’ composition. The findings indicate that the lipid phase is one of the key elements in the functioning of erythrocytes in norm as well as during development of various pathological processes

    Online Grooming and Preventive Justice

    Full text link

    The Influence of Fat Suppression Technique on Diffusion-weighted (DW) MRI in Lung Cancer

    Get PDF
    Purpose: To qualitatively and quantitatively investigate the effect of common vendor-related sequence variations in fat suppression techniques on the diagnostic performance of free-breathing DW protocols for lung imaging.Methods: 8 patients with malignant lung lesions were scanned in free breathing using two diffusion-weighted (DW) protocols with different fat suppression techniques: DWA used short-tau inversion recovery (STIR), and DWB used Spectral Adiabatic Inversion Recovery (SPAIR). Both techniques were obtained at two time points, between 1 hour and 1 week apart. Image quality was assessed using a 5-point scoring system. The number of lesions visible within lung, mediastinum and at thoracic inlet on the DW (b=800 s/mm2) images was compared. Signal-to-noise ratios (SNR) were calculated for lesions and para-spinal muscle. Repeatability of ADC values of the lesions was estimated for both protocols together and separately.Results: There was a signal void at the thoracic inlet in all patients with DWB but not with DWA. DWA images were rated significantly better than DWB images overall quality domains. (Cohens κ = 1). Although 8 more upper mediastinal/thoracic inlet lymph nodes were detected with DWA than DWB, this did not reach statistical significance (p = 0.23). Tumour ADC values were not significantly different between protocols (p=0.93), their ADC reproducibility was satisfactory (CoV=7.7%) and repeatability of each protocol separately was comparable (CoVDWA=3.7% (95% CI 2.5 7.1%) and CoVDWB=4.6% (95% CI 3.18.8%)).Conclusion: In a free-breathing DW-MRI protocol for lung, STIR fat suppression produced images of better diagnostic quality than SPAIR, while maintaining comparable SNR and providing repeatable quantitative ADC acceptable for use in a multicentre trial setting

    Genotyping of Capreolus pygargus Fossil DNA from Denisova Cave Reveals Phylogenetic Relationships between Ancient and Modern Populations

    Get PDF
    BACKGROUND: The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples. CONCLUSION/SIGNIFICANCE: Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer represent a complex and heterogeneous species with high migration rates and without evident subspecies structure. Low genetic diversity of the West Siberian Plain population indicates a recent bottleneck or founder effect
    corecore