112 research outputs found
Mechanistic mapping of (CS2/CO2)/epoxide copolymerization catalysis leads to terpolymers with improved degradability
The placement of main-group functionalities within polymers represents a strategy to access a wide catalog of materials but is limited by poor understanding of the catalyst selection criteria and polymerization mechanism when moving down the periodic table. Here, we study a series of new heterobimetallic carbon dioxide and carbon disulfide/epoxide copolymerization catalysts that allow for a comparative mechanistic understanding of two ring-opening copolymerization processes. We reveal that the distinct roles each metal plays are preserved from carbon dioxide to carbon disulfide, maintaining activity and selectivity across copolymerizations. Experimental and computational studies show that carbon disulfide/epoxide copolymerization can be understood as a series of structurally related insertion events that are interlinked by a central oxygen/sulfur scrambling reaction at the propagating chain end. This facilitates the synthesis of new carbon dioxide-/carbon disulfide-/epoxide-derived terpolymers with improved degradability over the parent carbon dioxide/epoxide copolymers at low levels of sulfur incorporation
Physical and Electrochemical Investigations into Blended Electrolytes Containing a Glyme Solvent and Two Bis{(trifluoromethyl)sulfonyl}imide-Based Ionic Liquids
International audienceIn this paper, we report on thermophysical and electrochemical investigations of a series of molecular solvent/ionic liquid (IL) binary mixture electrolytes. Tetraethylene glycol dimethyl ether (TEGDME) is utilized as the molecular solvent component in separate mixtures with two bis{(trifluoromethyl)sulfonyl}imide anion based ILs paired with similarly sized cyclic and acyclic alkylammonium cations; 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide, [Pyrr14][TFSI], or N-butyl-N,N-dimethyl-N-ethylammonium bis{(trifluoromethyl)sulfonyl}imide, [N1124][TFSI]. The blending of ILs with select molecular solvents is an important strategy for the improvement of the typically sluggish transport capabilities of these interesting electrolytic solvents. Bulk volumetric and transport properties are reported as a function of temperature and binary mixture formulation; demonstrating the capacity for enhancing desired properties of the IL. Micro-disk electrode voltammetry and chronoamperometry in O2-saturated binary mixture electrolytes was used to assess the effect of formulation on the solubility and diffusivity of the dissolved gas. In addition, further investigations of the behavior of the O2 redox couple at a GC macro-disk electrode are discussed
An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors
AbstractA novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention
Divalent Nonaqueous Metal-Air Batteries
In the field of secondary batteries, the growing diversity of possible applications for energy storage has led to the investigation of numerous alternative systems to the state-of-the-art lithium-ion battery. Metal-air batteries are one such technology, due to promising specific energies that could reach beyond the theoretical maximum of lithium-ion. Much focus over the past decade has been on lithium and sodium-air, and, only in recent years, efforts have been stepped up in the study of divalent metal-air batteries. Within this article, the opportunities, progress, and challenges in nonaqueous rechargeable magnesium and calcium-air batteries will be examined and critically reviewed. In particular, attention will be focused on the electrolyte development for reversible metal deposition and the positive electrode chemistries (frequently referred to as the “air cathode”). Synergies between two cell chemistries will be described, along with the present impediments required to be overcome. Scientific advances in understanding fundamental cell (electro)chemistry and electrolyte development are crucial to surmount these barriers in order to edge these technologies toward practical application.</jats:p
Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries
Fluorescent species are formed during cycling of lithium ion batteries as a result of electrolyte decomposition due to the instability of the non-aqueous electrolytes and side reactions that occur at the electrode surface. The increase in the background fluorescence due to the presence of these components makes it harder to analyse data due to the spectroscopic overlap of Raman scattering and fluorescence. Herein, Kerr gated Raman spectroscopy was shown to be an effective technique for the isolation of the scattering effect from the fluorescence enabling the collection of the Raman spectra of LiPF6 salt and LiPF6-based organic carbonate electrolyte, without the interference of the fluorescence component. Kerr gated Raman was able to identify POF3 on the LiPF6 particle surface, after the addition of trace water
Exploring carbon electrode parameters in Li–O<sub>2</sub> cells: Li<sub>2</sub>O<sub>2</sub> and Li<sub>2</sub>CO<sub>3</sub> formation
Different discharge products were revealed in Li–O2 batteries with different carbon cathodes by operando Raman and ex situ Raman and XPS measurements. In a carbon paper electrode Li2O2 is formed, while for electrodes with CNT, Li2CO3 and Li2O2 were noticed in different discharge stages.</jats:p
In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis.
OBJECTIVES: Intraplaque angiogenesis and inflammation are key promoters of atherosclerosis and are mediated by the alpha-V beta-3 (αvβ3) integrin pathway. We investigated the applicability of the αvβ3-integrin receptor-selective positron emission tomography (PET) radiotracer 18F-fluciclatide in assessing human aortic atherosclerosis. METHODS: Vascular 18F-fluciclatide binding was evaluated using ex vivo analysis of carotid endarterectomy samples with autoradiography and immunohistochemistry, and in vivo kinetic modelling following radiotracer administration. Forty-six subjects with a spectrum of atherosclerotic disease categorised as stable (n=27) or unstable (n=19; recent myocardial infarction) underwent PET and CT imaging of the thorax after administration of 229 (IQR 217-237) MBq 18F-fluciclatide. Thoracic aortic 18F-fluciclatide uptake was quantified on fused PET-CT images and corrected for blood-pool activity using the maximum tissue-to-background ratio (TBRmax). Aortic atherosclerotic burden was quantified by CT wall thickness, plaque volume and calcium scoring. RESULTS: 18F-Fluciclatide uptake co-localised with regions of increased αvβ3 integrin expression, and markers of inflammation and angiogenesis. 18F-Fluciclatide vascular uptake was confirmed in vivo using kinetic modelling, and on static imaging correlated with measures of aortic atherosclerotic burden: wall thickness (r=0.57, p=0.001), total plaque volume (r=0.56, p=0.001) and aortic CT calcium score (r=0.37, p=0.01). Patients with recent myocardial infarction had greater aortic 18F-fluciclatide uptake than those with stable disease (TBRmax 1.29 vs 1.21, p=0.02). CONCLUSIONS: In vivo expression of αvβ3 integrin in human aortic atheroma is associated with plaque burden and is increased in patients with recent myocardial infarction. Quantification of αvβ3 integrin expression with 18F-fluciclatide PET has potential to assess plaque vulnerability and disease activity in atherosclerosis
Integrated Covalent Organic Framework/Carbon Nanotube Composite as Li-Ion Positive Electrode with Ultra-High Rate Performance
Covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, the utilization of redox-active sites embedded within COFs is often limited by the low intrinsic conductivities of bulk-grown material, resulting in poor electrochemical performance. Here, a general strategy is developed to improve the energy storage capability of COF-based electrodes by integrating COFs with carbon nanotubes (CNT). These COF composites feature an abundance of redox-active 2,7-diamino-9,10-phenanthrenequinone (DAPQ) based motifs, robust β‑ketoenamine linkages, and well-defined mesopores. The composite materials (DAPQ-COFX—where X = wt% of CNT) are prepared by in situ polycondensation and have tube-type core-shell structures with intimately grown COF layers on the CNT surface. This synergistic structural design enables superior electrochemical performance: DAPQ-COF50 shows 95% utilization of redox-active sites, long cycling stability (76% retention after 3000 cycles at 2000 mA g−1), and ultra-high rate capability, with 58% capacity retention at 50 A g−1. This rate translates to charging times of ≈11 s (320 C), implying that DAPQ-COF50 holds excellent promise for high-power cells. Furthermore, the rate capability outperformed all previous reports for carbonyl-containing organic electrodes by an order of magnitude; indeed, this power density and the rapid (dis)charge time are competitive with electrochemical capacitors
- …