208 research outputs found

    Quantitative Modeling in Cell Biology: What Is It Good for?

    Get PDF
    Recently, there has been a surge in the number of pioneering studies combining experiments with quantitative modeling to explain both relatively simple modules of molecular machinery of the cell and to achieve system-level understanding of cellular networks. Here we discuss the utility and methods of modeling and review several current models of cell signaling, cytoskeletal self-organization, nuclear transport, and the cell cycle. We discuss successes of and barriers to modeling in cell biology and its future directions, and we argue, using the field of bacterial chemotaxis as an example, that the closer the complete systematic understanding of cell behavior is, the more important modeling becomes and the more experiment and theory merge

    Direct measurement of the lamellipodial protrusive force in a migrating cell

    Get PDF
    There has been a great deal of interest in the mechanism of lamellipodial protrusion (Pollard, T., and G. Borisy. 2003. Cell. 112:453–465). However, one of this mechanism's endpoints, the force of protrusion, has never been directly measured. We place an atomic force microscopy cantilever in the path of a migrating keratocyte. The deflection of the cantilever, which occurs over a period of ∼10 s, provides a direct measure of the force exerted by the lamellipodial leading edge. Stall forces are consistent with ∼100 polymerizing actin filaments per micrometer of the leading edge, each working as an elastic Brownian ratchet and generating a force of several piconewtons. However, the force-velocity curves obtained from this measurement, in which velocity drops sharply under very small loads, is not sensitive to low loading forces, and finally stalls rapidly at large loads, are not consistent with current theoretical models for the actin polymerization force. Rather, the curves indicate that the protrusive force generation is a complex multiphase process involving actin and adhesion dynamics

    Scaling behavior in steady-state contractile actomyosin network flow

    Full text link
    Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodeling of actin architecture tunes stress production and dissipation and regulates large-scale network flow remains poorly understood. Here, we generate contractile actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized 'water-in-oil' droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogenous, density-independent contraction for a wide range of physiological conditions, indicating that the myosin-generated stress driving contraction is proportional to the effective network viscosity. We further find that the contraction rate approximately scales with the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry

    Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells

    Get PDF
    Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.publishedVersio

    Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim

    Get PDF
    Proceedings of the National Academy of Sciences of the United States of America11220E2595-E260

    Weak Force Stalls Protrusion at the Leading Edge of the Lamellipodium

    Get PDF
    AbstractProtrusion, the first step of cell migration, is driven by actin polymerization coupled to adhesion at the cell’s leading edge. Polymerization and adhesive forces have been estimated, but the net protrusion force has not been measured accurately. We arrest the leading edge of a moving fish keratocyte with a hydrodynamic load generated by a fluid flow from a micropipette. The flow arrests protrusion locally as the cell approaches the pipette, causing an arc-shaped indentation and upward folding of the leading edge. The effect of the flow is reversible upon pipette removal and dependent on the flow direction, suggesting that it is a direct effect of the external force rather than a regulated cellular response. Modeling of the fluid flow gives a surprisingly low value for the arresting force of just a few piconewtons per micrometer. Enhanced phase contrast, fluorescence, and interference reflection microscopy suggest that the flow does not abolish actin polymerization and does not disrupt the adhesions formed before the arrest but rather interferes with weak nascent adhesions at the very front of the cell. We conclude that a weak external force is sufficient to reorient the growing actin network at the leading edge and to stall the protrusion

    Reverse engineering of force integration during mitosis in the Drosophila embryo

    Get PDF
    The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome segregation. The spindle accomplishes its function using forces generated by microtubules (MTs) and multiple molecular motors, but how these forces are integrated remains unclear, since the temporal activation profiles and the mechanical characteristics of the relevant motors are largely unknown. Here, we developed a computational search algorithm that uses experimental measurements to ‘reverse engineer' molecular mechanical machines. Our algorithm uses measurements of length time series for wild-type and experimentally perturbed spindles to identify mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles. The search eliminated thousands of possible models and identified six distinct strategies for MT–motor integration that agree with available data. Many features of these six predicted strategies are conserved, including a persistent kinesin-5-driven sliding filament mechanism combined with the anaphase B-specific inhibition of a kinesin-13 MT depolymerase on spindle poles. Such conserved features allow predictions of force–velocity characteristics and activation–deactivation profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the mechanisms of prometaphase and anaphase spindle elongation suggest future experiments
    corecore