310 research outputs found
The Evolution of the Far-UV Luminosity Function and Star Formation Rate Density of the Chandra Deep Field South from z=0.2-1.2 with Swift/UVOT
We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600A to
4000A) imaging of the Chandra Deep Field South to measure the rest-frame far-UV
(FUV; 1500A) luminosity function (LF) in four redshift bins between z=0.2 and
1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to
construct and fit the LFs: the traditional V_max method with bootstrap errors
and a maximum likelihood estimator. We observe luminosity evolution such that
M* fades by ~2 magnitudes from z~1 to z~0.3 implying that star formation
activity was substantially higher at z~1 than today. We integrate our LFs to
determine the FUV luminosity densities and star formation rate densities from
z=0.2 to 1.2. We find evolution consistent with an increase proportional to
(1+z)^1.9 out to z~1. Our luminosity densities and star formation rates are
consistent with those found in the literature, but are, on average, a factor of
~2 higher than previous FUV measurements. In addition, we combine our UVOT data
with the MUSYC survey to model the galaxies' ultraviolet-to-infrared spectral
energy distributions and estimate the rest-frame FUV attenuation. We find that
accounting for the attenuation increases the star formation rate densities by
~1 dex across all four redshift bins.Comment: 20 pages, 8 figures, 6 tables; accepted for publication in Ap
Quenching of spectroscopic factors for proton removal in oxygen isotopes
We present microscopic coupled-cluster calculations of the spectroscopic
factors for proton removal from the closed-shell oxygen isotopes
O with the chiral nucleon-nucleon interaction at
next-to-next-to-next-to-leading order. We include coupling-to-continuum degrees
of freedom by using a Hartree-Fock basis built from a Woods-Saxon
single-particle basis. This basis treats bound and continuum states on an equal
footing. We find a significant quenching of spectroscopic factors in the
neutron-rich oxygen isotopes, pointing to enhanced many-body correlations
induced by strong coupling to the scattering continuum above the neutron
emission thresholds.Comment: 3 figure
On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy
We provide evidence that UGC1382, long believed to be a passive elliptical
galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals
the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two
components: a high surface brightness disk galaxy surrounded by an extended low
surface brightness (LSB) disk. For UGC1382, the central component is a
lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk
has an effective radius of ~38 kpc and an extrapolated central surface
brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of
~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3
M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest
isolated disk galaxies known. The system resides in a massive dark matter halo
of at least 2x10^12 M_sun. Although possibly part of a small group, its low
density environment likely plays a role in the formation and retention of the
giant LSB and HI disks. We model the spectral energy distributions and find
that the LSB disk is likely older than the lenticular component. UGC1382 has
UV-optical colors typical of galaxies transitioning through the green valley.
Within the LSB disk are spiral arms forming stars at extremely low
efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382
may be a very long term resident of the green valley. We find that the
formation and evolution of the LSB disk is best explained by the accretion of
gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa
Studying Gender in Conference Talks -- data from the 223rd meeting of the American Astronomical Society
We present a study on the gender balance, in speakers and attendees, at the
recent major astronomical conference, the American Astronomical Society meeting
223, in Washington, DC. We conducted an informal survey, yielding over 300
responses by volunteers at the meeting. Each response included gender data
about a single talk given at the meeting, recording the gender of the speaker
and all question-askers. In total, 225 individual AAS talks were sampled. We
analyze basic statistical properties of this sample. We find that the gender
ratio of the speakers closely matched the gender ratio of the conference
attendees. The audience asked an average of 2.8 questions per talk. Talks given
by women had a slightly higher number of questions asked (3.20.2) than
talks given by men (2.60.1). The most significant result from this study
is that while the gender ratio of speakers very closely mirrors that of
conference attendees, women are under-represented in the question-asker
category. We interpret this to be an age-effect, as senior scientists may be
more likely to ask questions, and are more commonly men. A strong dependence on
the gender of session chairs is found, whereby women ask disproportionately
fewer questions in sessions chaired by men. While our results point to laudable
progress in gender-balanced speaker selection, we believe future surveys of
this kind would help ensure that collaboration at such meetings is as inclusive
as possible.Comment: 4 pages, 5 figures. Comments welcome
- …