5 research outputs found
Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning
We present morphological classifications obtained using machine learning for
objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes,
namely early types, spirals and point sources/artifacts. An artificial neural
network is trained on a subset of objects classified by the human eye and we
test whether the machine learning algorithm can reproduce the human
classifications for the rest of the sample. We find that the success of the
neural network in matching the human classifications depends crucially on the
set of input parameters chosen for the machine-learning algorithm. The colours
and parameters associated with profile-fitting are reasonable in separating the
objects into three classes. However, these results are considerably improved
when adding adaptive shape parameters as well as concentration and texture. The
adaptive moments, concentration and texture parameters alone cannot distinguish
between early type galaxies and the point sources/artifacts. Using a set of
twelve parameters, the neural network is able to reproduce the human
classifications to better than 90% for all three morphological classes. We find
that using a training set that is incomplete in magnitude does not degrade our
results given our particular choice of the input parameters to the network. We
conclude that it is promising to use machine- learning algorithms to perform
morphological classification for the next generation of wide-field imaging
surveys and that the Galaxy Zoo catalogue provides an invaluable training set
for such purposes.Comment: 13 Pages, 5 figures, 10 tables. Accepted for publication in MNRAS.
Revised to match accepted version
Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q10004, doi:10.1029/2004GC000772.Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (<C25) are removed by evaporation on the moving wire. Test samples processed using this procedure yielded n-alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N–28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.We thank the WHOI Summer Student Fellow program and NSF (BCS-0218511) for funding
Learning few-shot imitation as cultural transmission
Abstract Cultural transmission is the domain-general social skill that allows agents to acquire and use information from each other in real-time with high fidelity and recall. It can be thought of as the process that perpetuates fit variants in cultural evolution. In humans, cultural evolution has led to the accumulation and refinement of skills, tools and knowledge across generations. We provide a method for generating cultural transmission in artificially intelligent agents, in the form of few-shot imitation. Our agents succeed at real-time imitation of a human in novel contexts without using any pre-collected human data. We identify a surprisingly simple set of ingredients sufficient for generating cultural transmission and develop an evaluation methodology for rigorously assessing it. This paves the way for cultural evolution to play an algorithmic role in the development of artificial general intelligence
Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver
Poor prenatal nutrition, acting through epigenetic processes, induces persistent changes in offspring phenotype. We investigated the effect of maternal fat intake on polyunsaturated fatty acid (PUFA) status and on the epigenetic regulation of Fads2, encoding ?6 desaturase (rate limiting in PUFA synthesis), in the adult offspring. Rats (n=6 per dietary group) were fed either 3.5% (w/w), 7% (w/w) or 21% (w/w) butter or fish oil (FO) from 14 days preconception until weaning. Offspring (n=6 males and females per dietary group) were fed 4% (w/w) soybean oil until postnatal day 77. 20:4n-6 and 22:6n-3 levels were lower in liver phosphatidylcholine (PC) and phosphatidylethanolamine and plasma PC (all P<.0001) in offspring of dams fed 21% than 3.5% or 7% fat regardless of type. Hepatic Fads2 expression related inversely to maternal dietary fat. Fads2 messenger RNA expression correlated negatively with methylation of CpGs at ?623, ?394, ?84 and ?76 bases relative to the transcription start site (all P<.005). Methylation of these CpGs was higher in offspring of dams fed 21% than 3.5% or 7% fat; FO higher than butter. Feeding adult female rats 7% fat reduced 20:4n-6 status in liver PC and Fads2 expression and increased methylation of CpGs ?623, ?394, ?84 and ?76 that reversed in animals switched from 7% to 4% fat diets. These findings suggest that fat exposure during development induces persistent changes, while adults exhibit a transient response, in hepatic PUFA status in offspring through epigenetic regulation of Fads2. Thus, epigenetic regulation of Fads2 may contribute to short- and long-term regulation of PUFA synthesi