24 research outputs found
Novel in vivo imaging approaches to study embryonic and adult neurogenesis in the mouse
Neurogenesis is the process of generation of neurons during embryonic development and adulthood. The focus of this doctoral work is the study of the cell biological aspects of neurogenesis and the mechanisms regulating the switch of neural stem cells from proliferation to differentiation. During embryonic development neurogenic divisions occur at the apical or basal side of the pseudostratified epithelium that forms the wall of the neural tube, the neuroepithelium. Apical asymmetric neurogenic divisions (AP) give rise to a neuron and a progenitor cell, while basal symmetric neurogenic divisions (BP) give rise to two neurons. The first part of this thesis is focused on the study of some cell biological aspects of BPs. We first validated the use of the Tis21-GFP knock in mouse line, previously generated in our laboratory. We found that the totality of neurogenic progenitors is marked by the expression of a nuclear GFP. We calculated the abundance of BPs overtime since the onset of neurogenesis showing that BPs overcome APs over development. We studied the loss of apical contact of the basal dividing cells. We found that both neurogenic and non-neurogenic basally dividing progenitors miss the apical contact; which is lost prior mitosis. We generated and characterized a second mouse line, the Tubb3-GFP line expressing a plasma membrane-localized GFP in neurons. These two lines were crossed to obtain a new line (TisTubb-GFP) allowing detection of neurogenic divisions and tracking daughter cells. Using this model: (i) we imaged symmetric neurogenic divisions of BPs, identifying daughter cells as neurons, during imaging; (ii) we compared the kinetics of betaIII-tubulin-GFP appearance after apical or basal mitosis, showing that daughters of BPs express betaIII-tubulin-GFP faster than daughters coming from apical divisions; (iii) we imaged neuronal migration and localization of the Golgi apparatus. Neurogenesis in the adult is confined to two specific regions in the telencephalon: the sub ependymal zone, lining the ventricle, and dentate gyrus of the hippocampus. The second part of this thesis focuses on the adult neurogenic progenitors lineage. Tis21-GFP expression was found and characterized in the two adult neurogenic regions from early postnatal to adulthood. Using a panel of markers for the adult neurogenic cell lineage and confocal imaging, we characterized Tis21-GFP expression, in the dentate gyrus. Tis21-GFP is first expressed in the neurogenic subpopulation of doublecortin positive cells. Tis21-GFP is inherited by the neurons and eventually degraded. Moreover, our data suggest that mitotic Tis21-GFP cells are an indicator of the levels of neurogenesis more accurate than doublecortin positive cells, in the early postnatal mouse. (Anlage Quick time movies 77,88 MB
Hippocampal neurons with stable excitatory connectivity become part of neuronal representations
Experiences are represented in the brain by patterns of neuronal activity. Ensembles of neurons representing experience undergo activity-dependent plasticity and are important for learning and recall. They are thus considered cellular engrams of memory. Yet, the cellular events that bias neurons to become part of a neuronal representation are largely unknown. In rodents, turnover of structural connectivity has been proposed to underlie the turnover of neuronal representations and also to be a cellular mechanism defining the time duration for which memories are stored in the hippocampus. If these hypotheses are true, structural dynamics of connectivity should be involved in the formation of neuronal representations and concurrently important for learning and recall. To tackle these questions, we used deep-brain 2-photon (2P) time-lapse imaging in transgenic mice in which neurons expressing the Immediate Early Gene (IEG) Arc (activity-regulated cytoskeleton-associated protein) could be permanently labeled during a specific time window. This enabled us to investigate the dynamics of excitatory synaptic connectivity-using dendritic spines as proxies-of hippocampal CA1 (cornu ammonis 1) pyramidal neurons (PNs) becoming part of neuronal representations exploiting Arc as an indicator of being part of neuronal representations. We discovered that neurons that will prospectively express Arc have slower turnover of synaptic connectivity, thus suggesting that synaptic stability prior to experience can bias neurons to become part of representations or possibly engrams. We also found a negative correlation between stability of structural synaptic connectivity and the ability to recall features of a hippocampal-dependent memory, which suggests that faster structural turnover in hippocampal CA1 might be functional for memory
Tis21 Expression Marks Not Only Populations of Neurogenic Precursor Cells but Also New Postmitotic Neurons in Adult Hippocampal Neurogenesis
During embryonic cortical development, expression of Tis21 is associated with cell cycle lengthening and neurogenic divisions of progenitor cells. We here investigated if the expression pattern of Tis21 also correlates with the generation of new neurons in the adult hippocampus. We used Tis21 knock-in mice expressing green fluorescent protein (GFP) and studied Tis21-GFP expression together with markers of adult hippocampal neurogenesis in newly generated cells. We found that Tis21-GFP 1) was absent from the radial glia–like putative stem cells (type-1 cells), 2) first appeared in transient amplifying progenitor cells (type-2 and 3 cells), 3) did not colocalize with markers of early postmitotic maturation stage, 4) was expressed again in maturing neurons, and 5) finally decreased in mature granule cells. Our data show that, in the course of adult neurogenesis, Tis21 is expressed in a phase additional to the one of the embryonic neurogenesis. This additional phase of expression might be associated with a new and different function of Tis21 than during embryonic brain development, where no Tis21 is expressed in mature neurons. We hypothesize that this function is related to the final functional integration of the newborn neurons. Tis21 can thus serve as new marker for key stages of adult neurogenesis
Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors
Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis
Neurons of the mammalian CNS are thought to originate from progenitors dividing at the apical surface of the neuroepithelium. Here we use mouse embryos expressing GFP from the Tis21 locus, a gene expressed throughout the neural tube in most, if not all, neuron-generating progenitors, to specifically reveal the cell divisions that produce CNS neurons. In addition to the apical, asymmetric divisions of neuroepithelial (NE) cells that generate another NE cell and a neuron, we find, from the onset of neurogenesis, a second population of progenitors that divide in the basal region of the neuroepithelium and generate two neurons. Basal progenitors are most frequent in the telencephalon, where they outnumber the apically dividing neuron-generating NE cells. Our observations reconcile previous data on the origin and lineage of CNS neurons and show that basal, rather than apical, progenitors are the major source of the neurons of the mammalian neocortex
Implicit neural representations in light microscopy
Three-dimensional stacks acquired with confocal or two-photon microscopy are crucial for studying neuroanatomy. However, high-resolution image stacks acquired at multiple depths are time-consuming and susceptible to photobleaching. In vivo microscopy is further prone to motion artifacts. In this work, we suggest that deep neural networks with sine activation functions encoding implicit neural representations (SIRENs) are suitable for predicting intermediate planes and correcting motion artifacts, addressing the aforementioned shortcomings. We show that we can accurately estimate intermediate planes across multiple micrometers and fully automatically and unsupervised estimate a motion-corrected denoised picture. We show that noise statistics can be affected by SIRENs, however, rescued by a downstream denoising neural network, shown exemplarily with the recovery of dendritic spines. We believe that the application of these technologies will facilitate more efficient acquisition and superior post-processing in the future