135 research outputs found

    Designing a set of criteria for evaluating artificial neural networks trained with physics-based data to replicate molecular dynamics and other particle method trajectories

    Get PDF
    This article presents an in-depth analysis and evaluation of artificial neural networks (ANNs) when applied to replicate trajectories in molecular dynamics (MD) simulations or other particle methods. This study focuses on several architectures—feedforward neural networks (FNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), time convolutions (TCs), self-attention (SA), graph neural networks (GNNs), neural ordinary differential equation (ODENets), and an example of physics-informed machine learning (PIML) model—assessing their effectiveness and limitations in understanding and replicating the underlying physics of particle systems. Through this analysis, this paper introduces a comprehensive set of criteria designed to evaluate the capability of ANNs in this context. These criteria include the minimization of losses, the permutability of particle indices, the ability to predict trajectories recursively, the conservation of particles, the model’s handling of boundary conditions, and its scalability. Each network type is systematically examined to determine its strengths and weaknesses in adhering to these criteria. While, predictably, none of the networks fully meets all criteria, this study extends beyond the simple conclusion that only by integrating physics-based models into ANNs is it possible to fully replicate complex particle trajectories. Instead, it probes and delineates the extent to which various neural networks can “understand” and interpret aspects of the underlying physics, with each criterion targeting a distinct aspect of this understanding

    Deep Multiphysics and Particle–Neuron Duality: A Computational Framework Coupling (Discrete) Multiphysics and Deep Learning

    Get PDF
    There are two common ways of coupling first-principles modelling and machine learning. In one case, data are transferred from the machine-learning algorithm to the first-principles model; in the other, from the first-principles model to the machine-learning algorithm. In both cases, the coupling is in series: the two components remain distinct, and data generated by one model are subsequently fed into the other. Several modelling problems, however, require in-parallel coupling, where the first-principle model and the machine-learning algorithm work together at the same time rather than one after the other. This study introduces deep multiphysics; a computational framework that couples first-principles modelling and machine learning in parallel rather than in series. Deep multiphysics works with particle-based first-principles modelling techniques. It is shown that the mathematical algorithms behind several particle methods and artificial neural networks are similar to the point that can be unified under the notion of particle–neuron duality. This study explains in detail the particle–neuron duality and how deep multiphysics works both theoretically and in practice. A case study, the design of a microfluidic device for separating cell populations with different levels of stiffness, is discussed to achieve this aim

    From text to tech: Shaping the future of physics-based simulations with AI-driven generative models

    Get PDF
    This micro-article introduces a method for integrating Large Language Models with geometry/mesh generation software and multiphysics solvers, aimed at streamlining physics-based simulations. Users provide simulation descriptions in natural language, which the language model processes for geometry/mesh generation and physical model definition. Initial results demonstrate the feasibility of this approach, suggesting a future where non-experts can conduct advanced multiphysics simulations by simply describing their needs in natural language, while the code autonomously handles complex tasks like geometry building, meshing, and setting boundary conditions

    A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells in fluid flow

    Get PDF
    AbstractThis paper proposes a model based on the combination of smoothed particle hydrodynamics (SPH) and coarse-grained molecular dynamics (CGMD) for the simulation of flexible particles, such as capsules, vesicles or cells, under various flow conditions. The model can deal with both breakable and unbreakable particles. Validation against data available in the literature is included, and results concerning shear and Poiseuille flow in the presence of obstacles or sharp objects are discussed

    The discrete multi-hybrid system for the simulation of solid-liquid flows

    Get PDF
    This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scales (from microns to meters). Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow

    A Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows

    Get PDF
    We propose a new hybrid algorithm for incompressible micro and nanoflows that applies to non-isothermal steady-state flows and does not require the calculation of the Irving–Kirkwood stress tensor or heat flux vector. The method is validated by simulating the flow in a channel under the effect of a gravity-like force with bounding walls at two different temperatures and velocities. The model shows very accurate results compared to benchmark full MD simulations. In the temperature results, in particular, the contribution of viscous dissipation is correctly evaluated

    Temperature dependence of the Young's modulus of polymers calculated using a hybrid molecular mechanics-molecular dynamics method

    Get PDF
    A hybrid molecular mechanics-molecular dynamics (MM-MD) method is proposed to calculate the Youngs modulus of polymers at various temperature. It overcomes the limitation that MD is restricted to extremely high strain rates. A case study based on poly-methyl-methacrylate demonstrates that, contrary to previous MD studies, the method is able to accurately reproduce the effect of temperature on the Youngs modulus in close agreement with experimental data. The method can also predict a more clear transition between the glassy and rubbery states than previous MD studies

    A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations

    Get PDF
    Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to allow the study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The model is applied to encapsulate particles with a soft outer shell due, for example, to the partial ingress of moisture. This was validated by the simulation of spherical homogeneous linear elastic and viscoelastic particles. The method is based on forming a particle from an assembly of beads connected by springs or springs and dashpots that allow the sub-surface stress fields to be computed, and hence an accurate description of the gross deformation. It is computationally more expensive than DEM, but could be used to define more effective interaction law

    Combined peridynamics and discrete multiphysics to study the effects of air voids and freeze-thaw on the mechanical properties of asphalt

    Get PDF
    This paper demonstrates the use of peridynamics and discrete multiphysics to assess micro crack formation and propagation in asphalt at low temperatures and under freezing conditions. Three scenarios are investigated: (a) asphalt without air voids under compressive load, (b) asphalt with air voids and (c) voids filled with freezing water. The first two are computed with Peridynamics, the third with peridynamics combined with discrete multiphysics. The results show that the presence of voids changes the way cracks propagate in the material. In asphalt without voids, cracks tend to propagate at the interface between the mastic and the aggregate. In the presence of voids, they ‘jump’ from one void to the closest void. Water expansion is modelled by coupling Peridynamics with repulsive forces in the context of Discrete Multiphysics. Freezing water expands against the voids’ internal surface, building tension in the material. A network of cracks forms in the asphalt, weakening its mechanical properties. The proposed methodology provides a computational tool for generating samples of ‘digital asphalt’ that can be tested to assess the asphalt properties under different operating conditions
    corecore