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study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The model is
applied to particles with a soft outer shell due, for example. to the partial ingress of moisture. This was validated by the simulation of spherical homogeneous linear elastic and particles. The method
is based on forming a particle from an assembly of beads connected by springs or springs and dashpots that allow the sub-surface stress fields to be computed, and hence an accurate description of the gross deformation.
Itis computationally more expensive than DEM, but could be used to define more effective law : Kelvin-Voigt vi ic bonds; coarse grained model; particle method; viscoelastic particles:

particles 1. Ir The Discrete Element Method (DEM) has been employed to study a range of pl iring and products including powder mixing [1], agglomeration with

and without a liquid binder [2], and the release of Active Pharmaceutical Ingredients (APIs) from powder inhalation products [3]. Invariably, this has not involved inhomogeneous particles, and those of arbitrary shape have
been simulated by gluing primary particles together such that the interior is essentially rigid in nrder to minimise the computational cost, which is not representative of real particles [4]. An important example of mechanical
inhomogeneity is the softening of particles due the presence of moisture during ition. In such cases, a gradient of moisture content is developed with a corresponding gradient in the
mechanical properties. Another example is the encapsulation of APIs for which there is commonly 2 hard shell and a softer core. For particles formed from an organic polymer such as microcrystalline cellulose, the ingress
of moisture will cause them to become viscoelastic. Mesh-free methods and, in particular, particle methods such as DEM are increasingly popular in the scientific community due to their ability to overcome some drawbacks
of the conventional, mesh-based, numerical methods; see [5] for a review. Particle methods can also be coupled together within a Discrete Multiphysics (DMP) framework that, unlike conventional multiphysics techniques,

is based on “ al particles” rather than on tational meshes [6,7). In fact, there is a range of systems for which DMP can address problems that would be very difficult, if not impossible, for traditional
multiph are valves [8,9], blood clotting [10], phase transitions [11], capsules’ breakup [12,13], and fuzzy boundaries (e.g., a tablets’ dissolution) [14]. In many of the above
examples, the solid phase s often represented by a Lattice Spring Model (LMS) ChemEngineering 2020, 4, 30; doi:10.3390/ ing4020030 www.mdpi jourt ing and involves both linear

and non-linear springs for modelling elastic materials. In the current study, the method is extended to viscoelastic materials by implementing the Kelvin-Voigt (KV) viscoelastic model that involves springs and also dashpots
to represent the viscous friction. KV bonds have been proposed in the LSM literature, but only to model wave propagation in viscoelastic media (e.g., seismic wave propagation [15]), where the media are treated as
homogenous and no external forces are applied to the system. KV bonds have never been implemented to study the strain field of solid objects under the effect of external loads. Achieving this objective would provide
particle-based multiphysics techniques (e.g., DMP) with the ability to model viscoelastic materials, which is currently not possible. The current study addresses the above shortcoming in the literature. For benchmark and
validation purposes, the diametric compression of homogeneous spherical particles between parallel platens is described, which may be considered as a special case of indentation. A flat indenter or platen is widely used
especially for the diametric compression of single particles [16] and microcapsules [17]. Generally, they are loaded at a constant velocity to a specified and unloaded, or held in position, to
measure the stress relaxation. A quasistatic model based on Hertz's contact theory has been employed to describe the interaction between the particles that are packed together to represent unconsolidated porous media
[18]. The evolution of the with the was by the | approach. Here, the approach is that macroscopic bodies (such as particles) are sub-divided into computational beads.
Each bead is connected to the nearest neighbours by linear springs or by KV bonds. It will be shown that for the spherical particle represented by beads connected by linear springs model, under diametric compression
simulation, the relationship between force and displacement is nearly identical to the Hertz contact theory. In the current work, the KV model is compared initially with the theoretical results for a si
Then, elastic and viscoelastic spherical particle models including multiple bonds are developed and simulated under diametrical loading. Finally, applications of DMP to spherical particles composed of core and shell regions
with different properties are also presented to demonstrate the potential for inhomogeneous systems. 2. Materials and Methods 2.1. Theoretical Background 2.1.1. Hertz Theory for Elastic Normal Contact Force Hertz
proposed a theory to analyse the contact of two elastic isotropic spherical solids by assuming linear elasticity and frictionless boundary conditions [19]. For diametric compression, a spherical body is in contact with two flat
surfaces, and the radius of curvature of the flat surfaces is set to infinity. Since the total deformation is evaluated, it is divided by two [20], and therefore, the relationship between the force, FH, and the relative
displacement of the plates, 3, is as follows: v/ FH = 3(E1 20R2)33/2, — (1) where E, R, and v are the Young’s modulus, radius, and Poisson’s ratio of the particle, respectively. 2.1.2. Viscoelastic Normal Contact Force For
the diametric compression of a spherical viscoelastic particle, the force may be partitioned between the elastic deformation and the thus [21,22]: FVE = Felastic + Fdissipative = A83/2 + B51/23,
(2) where 5 and & are th displacement and the rate of displacement, respecively. The elastic term is . the Hertzian contact force where A s the constant in the Herz theory. The dissipative par has a

rincogn20s2t0a,nAt, xBFtO liEvWed in [23,22,24]. 2 of 11 2.1.3. Mass-Spring-Dashpot Models 2.1.3. Mass-Spring-Dashpot Models Figure depicts two particles of

mass connected by KV model, which is defined as “*KV,," 1 tr .oWdehle,
i bmriet e pslhaicpe:d by a
distance x from its equilibrium position, the resulting force is given by the following relationship: FIKT? == k1 +-+ bt 34222t dX , (3) , (3) where is the spring constant and is the dashpot constant. If such force is
applied t the model, the wdihsper et, nstant. If such a force is applied to the model, the displacement will be a function of time, t, as follows:
Xl (1)) = 2F2(11 2— ec=k?b-222)2,, % (4(4)) Figure L. Two particles connected by a spring and a dashpot in parallel. Figure 1. Two particles by spring and dashpot in parallel. 2.2. Model and Simulation 2.2.
Made) &nd Simulation In this section, we initially compare the numerical implementation of the spring and dashpot icianlirti
vnit mTehnetnat,iwone yit(hspthheertihcea bond. Then, we extend the
study to a large geometry (spherical) including multiple bonds. 2.2.1. Validation of a Single KV Bond 2.2.1. Validation of a Single KV Bond The KV bond was implemented numerically in LAMMPS [25] following the standard
Hooke's law and NThewetKoVn'sbolanwd hApoMt, 30)k.eT'os
i i f the i i iavesliym,palse i i
(a3s).sh i igeuthreeln, der i pmritnhge-dsi i 3 i m
giunaFtiiognu(rde). 1T Fco=m1pNar,emd t=0
0th.0e0a0N01alkygti,ckal=so0. i AT i,nags spl itnerFvigaulur i i TFh=e
1siNm,umla=te0d.0d0i0sOp1lakcge, : tohfeb, uFtiigounr.e 2, whAerseecmonisd
i i €T i idngdi i tthwesi i i using Simulink
(Version 9.1, The MathWorks Inc., Natick, MA, USA). As i idn VFaigliudraeti i i i
g 11lintok.thAafttecratlr
idli,nthke(Vdeisrpsi le,nTthi pki u.n, Ntilaitti cMheAd, UasStAeay.dy. i i iogrucerew3a,s r i Itahteed
dtescrweaesreedirr inwair erAof.ter the force was applied, the displacement increased rapidly until it

reached a steady state. When the force was removed, the displacement decreased rapidly, and as time increased, it approached asymptotically to zero. A third validation was performed by comparing the displacement
response of the system in Figure 1 t0 a sinusoidal load (dynarmic force), o the velue calculated using Simulink (Version 9.1, The MathWorks Inc. Natick, MA, USA), a5 shawn in Figure 4. Furthermore, in this case, the
jneering 2022002,04,,4, 3F0OR PEER REVIEW 4 04f 105f 14 ChemEngineering 2020, 4, x FOR PEER REVIEW 4 of 14 FFiig quiugrrueer2e:

i icti nitoi,onn,, i.ie.e.i,..e E.E ionn((440)4)..). FlgurSE. 3. Responsoef othfethe system depicteidn in

rle t10 tao a constant force, whichis is removed afte6r s.
TFhi6geusb.rleuTen3.eliRnbeel tFy it

STimhuesui jinskt.he di from the simulation, and the red line is using Simulink. A third validation was performed by comparing the displacement response of the system
in Figure 1 to & sinusoidal load (dynamic force). to the value calculated using Simulink (Version 9.1, The MathWorks Inc. Natick, MA, USA), as shown in Figure 4. Furthermore, in this case, the simulated displacements were
in close agreement with the calculated values. 2.2.2. Modelling the Diametric Compression of a Spherical Particle In DMP models, bodies are sub-divided into particles (beads). Since in this work,
we study KV bonds that can be used in DMP (or other particle-based multiphysics methods), we extended the validation to macroscopic spheres that accounted for multiple KV bonds. A sphere could be sub-divided into
computational beads in different ways. Here, we employed two approaches: the beads were arranged on (a) a regular cubic lattice and (b) an irregular tetrahedral lattice. Figure 4. Response of the system depicted in Figure

1 to a sinusoidal loading force. The lines are the Figure 4. Response of the system depicted inFigure 1 to a loading force. The lines are the from the simulation, and the points are
using Simulink. calculated from the simulation, and the points are calculated using Simulink. Figure 3. Response of the system depicted inFic h
ChemETnhgeinbeelruinegl2in02e0i,s4t,h30e calculated from the ion, and the red line is using5 of 15 Simulink. ChemEngineering 2020, 4, x FOR PEER REVIEW 5 of 14 2.2.2. Modelling the
Diametric Compression of a Spherical Particle In DMP models, bodies are sub-divided into al particles (beads). Since in this work, we study KV bonds that can be used in DMP (or other particle-
based multiphysi gdusr)e, 4w.. g 1 sier Xt LA
spdhisepr i i i i instsi i yssin.gHSeirmeu, winek. two appi : the beads were arranged on (a) a
regular cubic lattice and (b) an irregular tetrahedral lattilcne.the first case, the spherical particle (Figure 5a) was constructed frum cubic lattice cells (Figure 5b). It
contlanintheedf1ir3s7t,c0a5s9eb, smat ig
bSybl)i.r prtainii 13b7y,0K59V WTi laesatriecsit )a,
odfipat T i la fapsubree:
i ap: i i irseonk.nTe
(psupr i, aalnsdif P
orfetphreessepnrtin(pgsuraerley i iyso[2tr6o]p.i iabli i i and ntehxet
i i i cttehde i jart: i yeetlol bweitOh. ]
thhiepP[207is]:son's ra(lc is predlc(ed by the theory to be 0. 25 [26], and Voung s modulus is given by the fullowlng relationship [27]: E = 2.5 k/I (5) E = 2.5 k/I (5)
wwhehreerel ilsistt tghtt n 0,
paepr
dl,altaetre, ri, titwwilil ttooa Vi ic sphere by i irni itil (a) (b) Figure 5.5.(a(a))Visualisation ical particle

between two parallel compression planes. which araere represented bybyrerdedlines: (b(Obaynanelementary ceclellolfoaf acubic lattice. The tetrahedral cells were created by discretising the sphere with a finte-element
mesh generator. In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it a disordered model. Using this approach, less beads were required, but the calculation of the elastic
modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 3D finite element grid generator [28]. As in the case of the cubic
lattice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. The tetrahedral cells were created by discretising the sphere with a
finite-element mesh generator. In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it a disordered model. Using this approach, less beads were required, but the
calculation of the elastic modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 3D finite element grid generator [28]. As
in the case of the cubic lattice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. Two parallel solid planes were applied to the
particle in order to simulate diametric compression. They exerted a force to compress the particle, where the magnitude of the force, F(r), is given by [29]: F(r) = S(rb Ri)2, — (6) where S is the specified force constant, Ri
is the position of the plane and rb Ri is the distance from — the bead to the plane. The force is repuisive, and F(r) = O for rb > Ri. The force constant was set to be 1010 Nm—2 for all simulations in order to represent rigid
compression planes. During the loading one plane compi the particle with a constant velocity for both the elastic and viscoelastic particle models, while the other was maintained static. For
the viscoelastic particle, the displaced plane was held at its final position after the loading to allow for relaxation. The force and particle displacement were recorded during the simulations, and a time step of 10~11 s was
used to integrate Newton's equations of motion. It is well known that the KV model can produce the creep and recovery responses of a two-bead system, as shown in Figure 3, but cannot model stress relaxation behaviour.
However, as will be shown in the next section, for the many-bead spherical particle models connected with KV bonds, stress relaxation behaviour could be observed. This is because a many-bead particle model connected
with KV bonds is similar to a generalized KV model, i.e., a viscoelastic material model composed of N Kelvin-Voigt units assembled in series. The generalized KV model has been employed, for example to study the

i properties of mi ked materials [30]. 3. Result and Discussion 3.1. Perfectly Elastic Spherical Particles 3.1.1. Cubic Lattice Cell Model Figure 6a presents the simulated force as a function of displacement
for an elastic spherical particle based on the cubic Iattice cell with a spring constant of 200 Nm—1. The data were compared against the Hertz theory predictions (Equation (1)) and the comparison depicted in Figure 6b.
The force and 1t calculated from the were nearly identical to the Hertz theory. The fluctuating behaviour in Figure 6 was due to slight numerical inaccuracies that artificially perturbed the total energy
of the system. Since the particle was perfectly elastic, this energy was never dissipated and manifested itself as a high frequency perturbation. This is a known issue with the LSM, which, in the literature, is usually solved
by adding a small artificial dissipative term that damps these high frequencies [31]. In this study, since the focus was on validation, we did not any artificial The Young's modulus for the
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spherical particle was 39.1 MPa, which was in a close agreement with the Young's modulus of the elementary cubic lattice cell of 40 MPa calculated using Equation (5). The small discrepancy arose because, due to the cubic
cell internal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. The bulk shear stress, which is the sub-surface principal stress difference, i.e., |(o1
03)|/2, may be — calculated for each bead. The principal stresses (a1 and 63) were calculated from the virial stress and kinetic energy contributions [32] for each bead. The contours of the calculated shear stress are
presented in Figure 7, where a is the contact radius and r is the particle radius. The shape of the particle based on the cubic lattice cell with a spring constant of 200 Nm~L. The data were compared against the Hertz

theory predictions (Equation (1)) and the comparison depicted in Figure 6b. The force and di lculated from the si were nearly identical to the Hertz theory. The fluctuating behaviour in Figure 6 was
due to slight numerical inaccuracies that artificially perturbed the total energy of the system. Since the particle was perfectly elastic, this energy was never and itself as a high freq perturbation.
This is a known issue with the LSM, which, i the literature, is usually solved by adding a small artificial term that 3lalt]e. 8
[3si3n,3c4e].thTet iomfp0.I5eam.eTnhtiasnisyi ifcil with value of 0.48a [33]. ChemEngineering 2020, 4, x FOR

PEER REVIEW 7 of 14 The bulk shear stress, which is the sub-surface principal stress difference, i.e., [(51 — 03)|/2, may be calculated for each bead. The principal stresses (o1 and 03) were calculated from the virial stress
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calculated Young’s modulus for the spherical particle was 39.1 MPa, which was in a close agreement with the Young's modulus of the elementary cubic lattice cell of 40 MPa calculated using Equation (5). The small
discrepancy arose because, due to the cubic cell interal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. Figure 77.. Contours of the sub-surface

shear stresses esti from the simulations using the cubic lattice cell. 3.1.2. Disorder Model 3.1.2. Disorder Model si i 8uasipnrgetst eorr
confustnacntitoonf 200f0dNispmla—c1e.mAeltnt Figure 8a presents the normal contact force as a function of 1t from the
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amplitude of the perturbation. Using Equa(lon (1) and assuming the Young s modulus w,as calculated to be 12.4 kPa. that u = 0.25, the Young s modulus was calculated to be 12.4 kPa. Figure 8a presents the normal
contact force as a function of lculated from the using the disorder model with a spring constant of 200 Nm—1. Although this involved a smaller number of beads, the data were a closer fit to a
Hertzian response (Figure 8b), but with greater fluctuations of the force. AS above, these normally would be removed with an artificial dissipation term, but in this validation example, it is noteworthy

that, es expected, disordered structures increased the amplitude of the perturbation. Using Equation (1) and assuming that u = 0.25, the Young's modulus was caleulated to be 12.4 kPa. (s) (b) Figure 88..(a0aC)ontact
for ct( f.
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contours of the calculated sub-surface shear stresses, for which due to the ot tehaart fhoicr
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ster ttihclee spu faatceed doenr
tmhoeddeils.order model. 3.2. Viscoelastic Spherical Particles 3.2. Viscoelastic Spherical Particles 3.2.1. Cubic Lattice Cell Model 3.2.1. Cubic Lattice Cell Model Figure 10 presents the contact force as a function of time
during compression and relaxation calcu 1mOpthr g
mict thheassip 0e0laN —s1 esdtanttohfelcOu 1ces.ceTlhldeuforirnceg
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found to be 36.8 MPa, which was slightly less than that for the elastic particle. An aralysis of the force relaxation after compression was performed using a previous method far experimental e=miression of an agarose
micro-particle [35]. Instantaneou: to t = 0) and long-time (57, =4IT&ponding to t = ) elastic moduli were then calculated. The ‘values were fount: 10 bef:? = 54 MPa and £7 = 34 MPa. The Hertzian
Young's modulus was close to the calrulmed ralaxed vatus, The relaxation times are £7= 0.49 s and 7= 4.6 x 10-5 s. modulus using Equation (1. [t was found tc Ba 6.8 MFa, which was slightly less than that for the
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Cth=emOE)nagnindeelroinngg2-0t2i0m,4e, 3(+07, corrasponding to t = e2) elastic moduli were then calculated. The valuesowofelrSe found to bef:? = 54 MPa and 7 = 34 MPa. The Hertzian ¥oung's modulus was close to
the calculated relaxed value. The relaxation times are 7= 0.4 s and 7= 4.6 x 10-5 s. Figure 1100.. Contact force aass a function ooff time during ion and lculated from tthhee simulations
oofftthheeviscoelastic spherical particle ) 1. An analysis of the force relaxation after compression was performed using a previous method for experimental
compression of an agarose micro-particle [35]. Instantaneous (EO, corresponding to t = 0) and long-time (Eco, corresponding to t = co) elastic moduli were then calculated. The values were found to be EO = 54 MPa and
Eco = 34 MPa. The Hertzian Young's modulus was close to the calculated relaxed value. The relaxation times are t1=0.49 s and t2= 4.6 10-5 s. x ChemEngineering 2020, 4, x FOR PEER REVIEW 9 of 14 3.2. 2. Disorder
Model 3.2. 2. Disorder Model Figure 11 presents the simulated contact force as a function of time for a viscoelastic spherical
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tfhoercYeoaunndg n1)(a2s) lin12oKrdPear, twohoibchtawinatshg ire tohfanAt | aitcehd tvhaelu: se
melaosdtiuclupsarwticalse.obtained using Equation (1) as 112 KPa, which was greater than the calculated value for the elastic particle. Figure 11. Contact force as a function of time during compression and relaxation
101n.sCo 1tk tion calculated from the
spherical particle based on the disorder model. An analysis of the forss relaitation after compression was parformed using the procedure used for the cUAbING
it o foErim=ed20u3sKinPgatahr 0r0e KusPead. Tfhoer tHheerctuzibainc IYaottuicnegm'somdoed!.uTlhues

Jure?, in

210c3atKinPga tahnadt tih7e f=or2c0e0 KPa. The Hertzian Young's modulus was less than the calculated relaxed value, indicating that the
force was not fully relaxed after compression. The relaxation time 17 = 0.82 5 and {7= 2.83 x 10-5 s. It is nateworthy that since the dashpot accounted for the physical viscosity of the material, artificial dissipation was not
necessary in these examples. 3.3. Application of the Elastic Disorder I4odel: Hard Cors-Soft Shell and Soft Core-Hard Shell Spherical was not fully relaxed after compression. The relaxation time t1 = 0.82 s and t2= 2.83
10-5 s. It  is noteworthy that since the dashpot accounted for the physical viscosity of the material, artificial dissipation was not necessary in these examples. 3.3. Application of the Elastic Disorder Model: Hard Core-Soft
Shell and Soft Core-Hard Shell Spherical Particles under Compression In this section, we consider spherical int particles of a hard fter shell (HC-SS) and a soft core-harder shell (SC-HS). The
models were based on a disorder lattice with 6065 beads. The beads were connected with springs to their neighbours. The hard regions of the particles were modelled using a larger spring constant than that for the soft
part. The ratios of shell thickness, h. and the particle radius. r. were set to be 0.5, 0.2, and 0.05. A visualization of the shell thickness and particle radius is presented in Figure 12. A small artificial damping force (1-10
Nm~—1.5) was added to the beads, which was proportional to the relative velocity of the beads, in order to damp the kinetic energy from the system and obtain a smoother compression force. Two parallel solid planes were
positioned on the surface of the particle in order to simulate diametric compression, as described in the previous section. Using Equation (1) and assuming that u = 0.25, the Young's modulus was

HC-SS particles with different values of kcore and N/r. Figure 14 presents the force as a funcnon of fractional deformation (3/2r) of SC-HS particles with different values of kshell and h/r. The force profiles in Figures 13 and
14 can be compared with experimental data to simplify for small deformation e.g. for iles [36]. By Figures 13a and 14a, for the deformation up to 5%, it may be seen that the
change in kshell affected the deformation force more significantly than the change in kcore. Figure 13a shows that by reducing kshell from 200 to 20 Nm—1, the deformation force is now just about 11% of the initial value;
while in Figure 14a, by reducing Icore from 200 to 0.2 Nm—1, the force now is about 67% of the initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell. Increasing the h/r ratio
from 0. 05 1o 0.2 changed the deformation force more significantly than increasing the h/r ratio from 0. 2 to 1, as presented in Figures 13b and 14b for the deformation up to 5%. Increasing the h/r ratio from 0. 5 to 1
did not change the force significantly. Moreover, it may be seen from Figures 15b and 16b that changing the h/r ratio from 0.5 to 1 did not change the lumped Young's modulus significantly. In(tan)ese cases, the h/r ratio
of 0.5 could be consid(ebr)ed as a cut-off ratio where o 13b.e(an)oThsieg i illduesf.ormation (8/2r) of HC-SS particles (h/r = 0.2 and different kshell) and a
hard solid particle (kshell = kcore = 200 Nm~1). (b) The force as a function of fractional deformation (5/2r) of HC-SS particles (kcore = 200 Nm—1 and kshell = 20 Nm—1) with different values of h/r and a soft solid
particle (h/r = 1, keore = kshell = 20 Nm~1). Figure 12. lilustration of shell thickness () and particle radius (1). (a) (b) FigurFeiglu3r.e (1a3). (Tah)eThfeorfocerceasasaa function
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14 By comparing Figures 13a and 14a, for the deformation up to 5%, it may be seen that the change in kshell affected the deformation force more significantly than the change in kcore.
Figure 13a shows that by reducing kshell from 200 to 20 Nm—1, the deformation force is now just about 11% of the initial value; while in Figure 14a, by reducing Icore from 200 to 0.2 Nm~1, the force now is about 67%
of the initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell. Increasing the h/r ratio from 0. 05 to 0.2 changed the deformation force more significantly than increasing the h/r
ratio from 0. 2 to 1, as presented in Figures 13b and 14b for the deformation up to 5%. Increasing the h/r ratio from 0. 5 to 1 did not change the force significantly. Moreover, it may be seen from Figures 15b and 16b
that changing the h/r ratio from 0.5 to 1 did not change the lumped Young's modulus significantly. In these cases, the h/r ratio of 0.5 could be considered as a cut-off ratio where there would be no significant change to the
modulus. Based on the results, a(lau)mped Young's modulus could be calculat(ebd) using Equation (1), which
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/drd,ai irtaehnhiatnr i SS particle, i ing the h/r ratio decreased the Young's modulus, while for the SC-HS particle, it increased the value. (a) (b) FigurFeiglusre.
1(5a.)(La)umped Young's modulusooff HC-SS p: igfuFreigluzareal (obf) kshell. (b) Lumped Young's HC-SS par gul2rbe als2ba
fausnactfiounncotfino/nr.of hir. (a) (b) ChemEFnigginuereerinlg5.20(a20),L4u, 3mOped Young's modulus of HC-SS particles of Figure 12a as a function of kshell. (61)2 of 15 Lumped Young's modulus of HC-SS particles of
Figure 12b as a function of h/r. Figure 16. (a) Lumped(aY)oung's modulus of SC-HS particles of Figure(1b3)a as a function of kcore. F(big).uLruem16p.e(da)YoLuunmgp - ftiscCle-
sHoSf Fpiagrutircelel siagufurencit3ioanaosfah/fru.nction of kcore. (b). Lumped Young's modulus of SC-HS parti,cles of Figure 13b as a function of h/r. Based on the results, a lumped Young s modulus could be

calculated using Equation (1), which represented the equivalent Young's modulus the particle would have if it were homogeneous. Figures 15 and 16 present the lumped Young's moduli of HC-SS and SC-HS particles as a
function of kshell and kcore, respectively, and as a function of the h/r ratio. As expected, with increasing values of kshell or kcore, the Young's modulus increases for HC-SS and SC-HS particles, respectively. For the HC-SS
particle, increasing the h/r ratio decreased the Young's modulus, while for the SC-HS particle, it increased the value. 4. C It has been that the LSM could accurately represent the deformation,
including the associated sub-surface stress fields, not only for elastic particles, but also for viscoelastic particles when linear springs were substituted with KV bonds. The disorder model was computationally more efficient
than that based on a cubic lattice cell and led to a more refined definition of particle shape. Although unly sphevlcal particles were investigated in the current study, the approach is readily applicable to more complex
shapes of the type that are often encountered in the pharmaceutical sector. The proposed within a particl d multiphysics model such as DMP, to model mechanical inhomogeneity, for
example the softening of a particle immersed in water could be modelled by coupling the Young's modulus wlth the diffusion cosfficient. It could also be extended o non-lnear elastic deformation, plastic deformation, and
fracture by introducing non-linear springs, friction elements, and springs of limited extensibility. For example, the fracture strength is of particular interest for encapsulates. If compared with gluing DEM particles together to
model different shapes, the proposed technique provided not only accurate contact stresses, but also the stresses within the particle. The disadvantage, however, was in the greater computational cost. However, it was

more to than discrete finite elements, which require more complex material models. The proposed approach could also be adopted to develop effective interaction aws for

inhomogeneous systems in DEM simulations to reduce the computational cost. It would also be possible to incorporate LSM particles in a DEM Author C ILH.S., AA., and M.J.A.;
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