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chemengineering Article A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations Iwan H. Sahputra 1,2,* , Alessio Alexiadis 1 and Michael J. Adams 1 1 School of Chemical Engineering, University
of Birmingham, Birmingham B15 2TT, UK; a.alexiadis@bham.ac.uk (A.A.); m.j.adams@bham.ac.uk (M.J.A.) 2 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia * Correspondence:
iwanh@petra.ac.id ?????????? Received: 10 March 2020; Accepted: 25 April 2020; Published: 1 May 2020 ??????? Abstract: Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to allow the
study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The model is
applied to encapsulate particles with a soft outer shell due, for example, to the partial ingress of moisture. This was validated by the simulation of spherical homogeneous linear elastic and viscoelastic particles. The method
is based on forming a particle from an assembly of beads connected by springs or springs and dashpots that allow the sub-surface stress fields to be computed, and hence an accurate description of the gross deformation.
It is computationally more expensive than DEM, but could be used to define more effective interaction laws. Keywords: Kelvin–Voigt viscoelastic bonds; coarse grained model; particle method; viscoelastic particles;
inhomogeneous particles 1. Introduction The Discrete Element Method (DEM) has been employed to study a range of pharmaceutical manufacturing processes and products including powder mixing [1], agglomeration with
and without a liquid binder [2], and the release of Active Pharmaceutical Ingredients (APIs) from powder inhalation products [3]. Invariably, this has not involved inhomogeneous particles, and those of arbitrary shape have
been simulated by gluing primary particles together such that the interior is essentially rigid in order to minimise the computational cost, which is not representative of real particles [4]. An important example of mechanical
inhomogeneity is the softening of particles due the presence of moisture during agglomeration or dispersion/dissolution. In such cases, a gradient of moisture content is developed with a corresponding gradient in the
mechanical properties. Another example is the encapsulation of APIs for which there is commonly a hard shell and a softer core. For particles formed from an organic polymer such as microcrystalline cellulose, the ingress
of moisture will cause them to become viscoelastic. Mesh-free methods and, in particular, particle methods such as DEM are increasingly popular in the scientific community due to their ability to overcome some drawbacks
of the conventional, mesh-based, numerical methods; see [5] for a review. Particle methods can also be coupled together within a Discrete Multiphysics (DMP) framework that, unlike conventional multiphysics techniques,
is based on “computational particles” rather than on computational meshes [6,7]. In fact, there is a range of systems for which DMP can address problems that would be very difficult, if not impossible, for traditional
multiphysics approaches. Examples are cardiovascular valves [8,9], blood clotting [10], phase transitions [11], capsules’ breakup [12,13], and fuzzy boundaries (e.g., a tablets’ dissolution) [14]. In many of the above
examples, the solid phase is often represented by a Lattice Spring Model (LMS) ChemEngineering 2020, 4, 30; doi:10.3390/ chemengineering4020030 www.mdpi.com/journal/chemengineering and involves both linear
and non-linear springs for modelling elastic materials. In the current study, the method is extended to viscoelastic materials by implementing the Kelvin–Voigt (KV) viscoelastic model that involves springs and also dashpots
to represent the viscous friction. KV bonds have been proposed in the LSM literature, but only to model wave propagation in viscoelastic media (e.g., seismic wave propagation [15]), where the media are treated as
homogenous and no external forces are applied to the system. KV bonds have never been implemented to study the strain field of solid objects under the effect of external loads. Achieving this objective would provide
particle-based multiphysics techniques (e.g., DMP) with the ability to model viscoelastic materials, which is currently not possible. The current study addresses the above shortcoming in the literature. For benchmark and
validation purposes, the diametric compression of homogeneous spherical particles between parallel platens is described, which may be considered as a special case of indentation. A flat indenter or platen is widely used
especially for the diametric compression of single particles [16] and microcapsules [17]. Generally, they are loaded at a constant velocity to a specified displacement and unloaded, or alternatively held in position, to
measure the stress relaxation. A quasistatic model based on Hertz’s contact theory has been employed to describe the interaction between the particles that are packed together to represent unconsolidated porous media
[18]. The evolution of the permeability with the deformation was computed by the lattice-Boltzmann approach. Here, the approach is that macroscopic bodies (such as particles) are sub-divided into computational beads.
Each bead is connected to the nearest neighbours by linear springs or by KV bonds. It will be shown that for the spherical particle represented by beads connected by linear springs model, under diametric compression
simulation, the relationship between force and displacement is nearly identical to the Hertz contact theory. In the current work, the KV model is compared initially with the theoretical results for a single viscoelastic bond.
Then, elastic and viscoelastic spherical particle models including multiple bonds are developed and simulated under diametrical loading. Finally, applications of DMP to spherical particles composed of core and shell regions
with different properties are also presented to demonstrate the potential for inhomogeneous systems. 2. Materials and Methods 2.1. Theoretical Background 2.1.1. Hertz Theory for Elastic Normal Contact Force Hertz
proposed a theory to analyse the contact of two elastic isotropic spherical solids by assuming linear elasticity and frictionless boundary conditions [19]. For diametric compression, a spherical body is in contact with two flat
surfaces, and the radius of curvature of the flat surfaces is set to infinity. Since the total deformation is evaluated, it is divided by two [20], and therefore, the relationship between the force, FH, and the relative
displacement of the plates, δ, is as follows: √ FH = 3(E1 2υR2)δ3/2, − (1) where E, R, and υ are the Young’s modulus, radius, and Poisson’s ratio of the particle, respectively. 2.1.2. Viscoelastic Normal Contact Force For
the diametric compression of a spherical viscoelastic particle, the force may be partitioned between the elastic deformation and the viscoelastic dissipation, thus [21,22]: FVE = Felastic + Fdissipative = Aδ3/2 + Bδ1/2δ, .
(2) where δ and δ are the displacement and the rate of displacement, respectively. The elastic term is . the Hertzian contact force where A is the constant in the Hertz theory. The dissipative part has a
dChisemsiEpnagtiinveeerincogn20s2t0a,n4t, xBFtOhRatPEwEaRsRdEeVrIiEvWed independently in [21,23,24]. 3 of 14 2.1.3. Mass-Spring-Dashpot Models 2.1.3. Mass-Spring-Dashpot Models Figure depicts two particles of
mass connected by KV model, which is defined as ““KV„” bondFaignudriem1pdleempiecntstetdwnoupmaertriicclaelslyoafsmdaessscrmibceodninnetchteednebxyt aseKctViomn.oWdehle,nwahiKchV
ibsodnedfiinseddisapslaaceKdVby baodnisdtaanncde iXmfprolemmeitnsteeqduniluibmrieurmicaplloysiatsiodne,stchreibreedsuilntinthgefonrecxet issegctivioenn. bWyhthene faolKloVwbinogndreilsatdioisnpslhaicpe:d by a
distance X from its equilibrium position, the resulting force is given by the following relationship: F K?V? == kX  ++ b ?d???t dX , (3) , (3) where is the spring constant and is the dashpot constant. If such force is
applied to the model, the wdihsperleackeimsethnet swpirlilnbgecofnusntacntitoannodfbtiimseth,et,daassfhopllootwcos:nstant. If such a force is applied to the model, the displacement will be a function of time, t, as follows:
X (( t)) = ?F?(11 ?− e −?k?b·?t??)?,, ?k (4(4)) Figure 1. Two particles connected by a spring and a dashpot in parallel. Figure 1. Two particles connected by spring and dashpot in parallel. 2.2. Model and Simulation 2.2.
Model and Simulation In this section, we initially compare the numerical implementation of the spring and dashpot modeInlwthitihs tsheecttihoneo,rweteicianlirtieaslulyltscofomrpaasriengthlee
vniuscmoeelraicsatilcibmopnlde.mTehnetnat,iwone eoxfttehnedstphreinsgtuadnydtodaaslhaprgoet gmeoodmeeltwryit(hspthheertihceaol)reinticclauldriensgulmtsuflotirpalesibnognledsv.iscoelastic bond. Then, we extend the
study to a large geometry (spherical) including multiple bonds. 2.2.1. Validation of a Single KV Bond 2.2.1. Validation of a Single KV Bond The KV bond was implemented numerically in LAMMPS [25] following the standard
Hooke’s law and NThewetKoVn’sbolanwd owfaflsuiimdpflloewmefonrtetdhensupmrienrgicaanlldydinasLhApoMt,MrePsSpe[c2t5i]vefolyll,oawsisnhgowthneisntaEnqduaartdioHno(3o)k.eT’os
vlaawlidaantdetNheewnutomne’rsiclaawlimofpflelumidenftlaotwionfoorf the smparisns-gsparnidngd-dasahshppoot,trmesopdeeclt,iavesliym,palse sshyostwemn iwnaEsqcureaatitoedn
(a3s).shToowvnaliindFatigeuthree1n,uamnderthicealdiimspplalecmemeenntattwioans ocfaltchuelamteadssfr-sopmritnhge-dsiamshuplaottiomnosdaenld, acosmimppalreedsytosttehme
wanaaslyctriecaaltesdolaustioshnoowfEnqiunaFtiiognu(r4e).1T,hanedfotllhoewdinisgpplaacreammeentetrwvaalsuceaslwcuelraeteedmpfrloomyedthfeorsitmheusliamtiounlastiaonnds: Fco=m1pNar,emd t=o
0th.0e0a0n01alkygti,ckal=so0.l2utNio/nmo,fanEdquaartaionnge(4o).f Tvhaleufeoslloofwbi,nags sphaorawmneitnerFvigaulurees2w,werheereemmpliosytehde fmorastsheofsitmheublaetaiodns.s:TFh=e
1siNm,umla=te0d.0d0i0s0p1lakcge,mke=n0ts.2aNre/min,calnodseaargarnegeemoefnvtawluitehs tohfeb,aansalsyhtoicwalnsionluFtiigounr.e 2, whAerseecmonisd
tvhaelidmaatisosnowftahsepberefaodrms.eTdhbeysicmomulpaateridngditshpelacrceeempeanntds arerceoivnercylorseespaognreseesmoefntthwesityhsttehme ainnaFliygtuicrael1sotloutthioant.calculated using Simulink
(Version 9.1, The MathWorks Inc., Natick, MA, USA). As dAepiscetceodnidn vFaigliudraeti3o,nthweassimpuerlafotermdeddispblyacceommepnatrsinwgerteheincrceloespe
aangdrereemcoevnetrwyitrhestphoencsaelscuolfattehde vsyasluteemsfrinomFigSiumreu1lintok.thAafttecratlhcuelfaotrecde
uwsainsgapSpimlieudli,nthke(Vdeisrpsiloacne9m.1e,nTthinecMreaasthedWroarpkisdlIyncu.n,Ntilaitticrkea,cMheAd, UasStAea).dyAsstadtee.pWictheedn itnheFfiogrucerew3a,s rthemeosvimedu,ltahteed
displacemendtescrweaesreedirnapcildolsye, aangdreaesmtiemnet inwcirtehastehde, citaalcpuplaroteadchveadluaessymfrpotmotiSciamlluyltionkz.erAof.ter the force was applied, the displacement increased rapidly until it
reached a steady state. When the force was removed, the displacement decreased rapidly, and as time increased, it approached asymptotically to zero. A third validation was performed by comparing the displacement
response of the system in Figure 1 to a sinusoidal load (dynamic force), to the value calculated using Simulink (Version 9.1, The MathWorks Inc. Natick, MA, USA), as shown in Figure 4. Furthermore, in this case, the
simulated ChemEngineering 2022002,04,,4x, 3F0OR PEER REVIEW 4 o4f 1o5f 14 ChemEngineering 2020, 4, x FOR PEER REVIEW 4 of 14 FFiigFguiugrrueer2e2..2C.oCmopmapraisroisnonoofoftfhtehedisplacement
ccaalclcuulalateteddffrroommththeessimimuulalattioionnaanandnddthttheheaenanalayltyictiaclasloslsouoltulioutnitoi,onn,, i.ie.e.i,..e,E.E,qquuaatitoionn((44()4)..). Figur3e. 3. Responsoef othfethe system depicteidn in
Figur1e t1o tao a constant force, whichis is removed afte6r s.
TFhi6geusb.rleuTeh3.eliRnbeelusipesoltnihnseeedoifsthpthelaedcseiysmpstleeanmctemcdaeelcpnuitclcataetledcduinlfartFoeimdguftrrhoeem1sittmoheuaslcaiomtinousnltaa,tnaiontndfo,trahcneed,rwtehdheilcrienhdeisliisrnecemailscoucvalealdctueadlfattueesrdin6gs.
STimhuesuibnlilgnukSe.imlinueliinskt.he displacement calculated from the simulation, and the red line is calculated using Simulink. A third validation was performed by comparing the displacement response of the system
in Figure 1 to a sinusoidal load (dynamic force), to the value calculated using Simulink (Version 9.1, The MathWorks Inc. Natick, MA, USA), as shown in Figure 4. Furthermore, in this case, the simulated displacements were
in close agreement with the calculated values. 2.2.2. Modelling the Diametric Compression of a Spherical Particle In DMP models, macroscopic bodies are sub-divided into computational particles (beads). Since in this work,
we study KV bonds that can be used in DMP (or other particle-based multiphysics methods), we extended the validation to macroscopic spheres that accounted for multiple KV bonds. A sphere could be sub-divided into
computational beads in different ways. Here, we employed two approaches: the beads were arranged on (a) a regular cubic lattice and (b) an irregular tetrahedral lattice. Figure 4. Response of the system depicted inFigure
1 to a sinusoidal loading force. The lines are the Figure 4. Response of the system depicted inFigure 1 to a sinusoidal loading force. The lines are the displacements calculated from the simulation, and the points are
calculated using Simulink. displacements calculated from the simulation, and the points are calculated using Simulink. Figure 3. Response of the system depicted inFigure 1 to a constant force, which is removed after 6 s.
ChemETnhgeinbeelruinegl2in02e0i,s4t,h30e displacement calculated from the simulation, and the red line is calculated using5 of 15 Simulink.ChemEngineering 2020, 4, x FOR PEER REVIEW 5 of 14 2.2.2. Modelling the
Diametric Compression of a Spherical Particle In DMP models, macroscopic bodies are sub-divided into computational particles (beads). Since in this work, we study KV bonds that can be used in DMP (or other particle-
based multiphysics metFhiogdusr)e,4w.eReesxptoennsdeeodf tthheesvyasltiedmatdioepnictotemdiancFroigsucroep1ictospahsienruessotihdaatl laocacdoiungntfeodrcfeo.rTmheullitniepslearKeVthebonds. A
spdhiseprleacceomuelndtsbceaslcuubla-dteidvifdroemd tihnetosicmoumlaptiuotna,taionndatlhbeepaodinstsinardeicfafelcruelnattewdauyssin.gHSeirmeu,lwinek.employed two approaches: the beads were arranged on (a) a
regular cubic lattice and (b) an irregular tetrahedral lattiIcne.the first case, the spherical particle (Figure 5a) was constructed from cubic lattice cells (Figure 5b). It
contIanintheedf1ir3s7t,c0a5s9eb,tehaedsspwhietrhiceaalcphacrotinclnee(cFtiegdutroe 5thae)wneaasrceosntnsteriugchtebdoufrrosmancdubailconlagttfiacceecdelilasg(oFnigaulsre
b5ybl)i.neItarcospnrtainingesdor13b7y,0K59V bbeoanddss.wTithhisewacohrkcofoncnuescetesdontovitshceoenlaesatriecsittyn(eKigVhbboounrdss)a,nadndaltohnegcafsaece
odfipaugroenlyaleslbaystliicnsepahrseprersin(glisnoerarbsypKriVngbso)nwdas.sTchoimswpuotrekdfofocursceosmopnavriisscoone.laTshtiecictays(eKoVf lbionneadrs)s,parnidngths,e incafsaecto,hfapsubreeelyn
eallarestaidcyspsthuedreiesd(,lainnedarmsapsrsi-nsgpsr)inwgacsubcoicmlaptutitceedcfeollrmcoomdeplasrairseonk.nTohwenctaosreeopfrelsineneatr
(psuprreinlyg)se,lianstfiaccht,omhaosgbeeneonusailsroetardoypisctumdaiteedri,aalnsdif tmheascso-nspnreicntgiocnubbeitcwleaettnictehecemllamssoedsealnsdatrheeksntioffwnenstso
orfetphreessepnrtin(pgsuraerley)seellaecsttiecdhaopmporogpenrioautesliyso[2tr6o]p.icFomraatecruiablisciflatthteicceocnenllecwtiiothn bneetawreesetnntehieghmbaosusres and ntehxet nsetiaffrnesets-
sneoifghthbeousrprliinnegasrasrperisnegles,cttehde Paopipsrsoopnr’siartaetlyio[i2s6p].reFdoircteadcbuybitchelatthtiecoerycetlol bweit0h.2n5e[a2r6e]s,t annedigYhobuonugr’samndodnuelxutsniseagrievsetn-
nbeyigthhbeofuorllloiwneianrgsrperlaintigosn,sthhiepP[2o7is]:son’s ratio is predicted by the theory to be 0.25 [26], and Young’s modulus is given by the following relationship [27]: E = 2.5 k/l (5) E = 2.5 k/l (5)
wwhehreerel ilsisthtehelelnegntghthofoafnanedegdegeofotfhtehececlel.llI.nInththee“R“ReseusultlstsanadndDDisicsucsussisoino”n”(Sseeccttiioonn3,)o,uorumrmodoedlewlwillilble
bieniintiiatilalyllyvavlaidliadtaetdedagaagianisntstthtehseestehtehoeroerteictaiclavlavlauleusefsofroar paeprfeercfetlcytleylaeslatisctiscpshpehreerbeyboynolynlayccaoccuonutinntginfgor
folirnleinaerasrpsrpinrginsgasnadn,dl,altaetre,ri,titwwililllbbeeextended ttooa viscoelastic sphere by substitutingththeesspprirninggsswwitihth KKVVbobnondds.s. (a) (b) Figure 5.5.(a(a))Visualisation ooffaaspherical particle
between two parallel compression planes, which araere represented bybyrerdedlines; (b()ba)nanelementary ceclellolfoaf acubic lattice. The tetrahedral cells were created by discretising the sphere with a finite-element
mesh generator. In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it a disordered model. Using this approach, less beads were required, but the calculation of the elastic
modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 3D finite element grid generator [28]. As in the case of the cubic
lattice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. The tetrahedral cells were created by discretising the sphere with a
finite-element mesh generator. In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it a disordered model. Using this approach, less beads were required, but the
calculation of the elastic modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 3D finite element grid generator [28]. As
in the case of the cubic lattice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. Two parallel solid planes were applied to the
particle in order to simulate diametric compression. They exerted a force to compress the particle, where the magnitude of the force, F(r), is given by [29]: F(r) = S(rb Ri)2, − (6) where S is the specified force constant, Ri
is the position of the plane and rb Ri is the distance from − the bead to the plane. The force is repulsive, and F(r) = 0 for rb > Ri. The force constant was set to be 1010 Nm−2 for all simulations in order to represent rigid
compression planes. During the compression loading simulations, one plane compressed the particle with a constant velocity for both the elastic and viscoelastic particle models, while the other was maintained static. For
the viscoelastic particle, the displaced plane was held at its final position after the loading to allow for relaxation. The force and particle displacement were recorded during the simulations, and a time step of 10−11 s was
used to integrate Newton’s equations of motion. It is well known that the KV model can produce the creep and recovery responses of a two-bead system, as shown in Figure 3, but cannot model stress relaxation behaviour.
However, as will be shown in the next section, for the many-bead spherical particle models connected with KV bonds, stress relaxation behaviour could be observed. This is because a many-bead particle model connected
with KV bonds is similar to a generalized KV model, i.e., a viscoelastic material model composed of N Kelvin–Voigt units assembled in series. The generalized KV model has been employed, for example to study the
viscoelastic properties of micro-cracked materials [30]. 3. Result and Discussion 3.1. Perfectly Elastic Spherical Particles 3.1.1. Cubic Lattice Cell Model Figure 6a presents the simulated force as a function of displacement
for an elastic spherical particle based on the cubic lattice cell with a spring constant of 200 Nm−1. The data were compared against the Hertz theory predictions (Equation (1)) and the comparison depicted in Figure 6b.
The force and displacement calculated from the simulations were nearly identical to the Hertz theory. The fluctuating behaviour in Figure 6 was due to slight numerical inaccuracies that artificially perturbed the total energy
of the system. Since the particle was perfectly elastic, this energy was never dissipated and manifested itself as a high frequency perturbation. This is a known issue with the LSM, which, in the literature, is usually solved
by adding a small artificial dissipative term that damps these high frequencies [31]. In this study, since the focus was on validation, we did not implement any artificial dissipation. The calculated Young’s modulus for the
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spherical particle was 39.1 MPa, which was in a close agreement with the Young’s modulus of the elementary cubic lattice cell of 40 MPa calculated using Equation (5). The small discrepancy arose because, due to the cubic
cell internal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. The bulk shear stress, which is the sub-surface principal stress difference, i.e., |(σ1
σ3)|/2, may be − calculated for each bead. The principal stresses (σ1 and σ3) were calculated from the virial stress and kinetic energy contributions [32] for each bead. The contours of the calculated shear stress are
presented in Figure 7, where a is the contact radius and r is the particle radius. The shape of the particle based on the cubic lattice cell with a spring constant of 200 Nm−1. The data were compared against the Hertz
theory predictions (Equation (1)) and the comparison depicted in Figure 6b. The force and displacement calculated from the simulations were nearly identical to the Hertz theory. The fluctuating behaviour in Figure 6 was
due to slight numerical inaccuracies that artificially perturbed the total energy of the system. Since the particle was perfectly elastic, this energy was never dissipated and manifested itself as a high frequency perturbation.
This is a known issue with the LSM, which, in the literature, is usually solved by adding a small artificial dissipative term that dcoanmtopusrtshwesaes shiimghilafrrteoqutheantcciaeslcu[3la1t]e.dInthtehoirsetsitcuadllyy,
[3si3n,3c4e].thTehefomcauxsimwuamsovnalvuaelwidaastifoonu,nwdeatdaiddenpotht iomfp0.l5eam.eTnhtiasnisyianratifcilcoisael dagisrseiepmateionnt.with theoretical value of 0.48a [33]. ChemEngineering 2020, 4, x FOR
PEER REVIEW 7 of 14 The bulk shear stress, which is the sub-surface principal stress difference, i.e., |(σ1 − σ3)|/2, may be calculated for each bead. The principal stresses (σ1 and σ3) were calculated from the virial stress
and kinetic energy contrib(au)tions [32] for each bead. The contours of th(eb)calculated shear stress are preseFnigteudrei6n6..(Fa(i)agC)uorneta7c,t
fworhcfeeorarecseafauissnctathioefnucnoocftndiotisanpcltaocfreamddieisunpstl;a(acben)mdcoernnttia;sct(tbfho)erccepoanasrtataiccftulenfocrtraicodeniuoafssd.aiTsphflueancsechmtioaenpnet3o/o2f.f the
contodBuiosrtpshlawwceeamrseecsnaitml3c/2ui.llBaatroetdthofwrtohemraetthceaslcimulualtaetidofrnotshmoefoarnetesiiclmaaslutliylcast[ip3oh3ne,s3ri4oc]fa.laTpnahereltaicsmlteiacbxsaipsmehdeuromicnatvlhapelaucruteibciwlcealbasattsifecoeduconendll
at a depthtmheoofdcue0lb..5iTca.hlaTetthdiciaseshicseedlilnlmianoecdsleoalsr.eeTthahegedrbeaeessmhtefiedtnsltionwfetsihtaherdethateaotrboeetsitcfaiHtlsveoraftlzuthteheoedofar0tya..4t8oath[3e3H].ertz theory. The
calculated Young’s modulus for the spherical particle was 39.1 MPa, which was in a close agreement with the Young’s modulus of the elementary cubic lattice cell of 40 MPa calculated using Equation (5). The small
discrepancy arose because, due to the cubic cell internal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. Figure 77.. Contours of the sub-surface
shear stresses estimated from the simulations using the cubic lattice cell. 3.1.2. Disorder Model 3.1.2. Disorder Model simuFlaitgiuonres 8uasipnrgetsheentdsisthoredneorrmmoadleclowntiathctafosprcreinags
confustnacntitoonf 2o0f0dNispmla−c1e.mAeltnhtocuaglhcutlhaitsedinfvroolmvedthae Figure 8a presents the normal contact force as a function of displacement calculated from the ssmimaullleartinounmsubesirnogf
tbheeaddsis,othrdeedramtaowdeerlewaicthloasesrpfirtintog acoHnesrtatznitanofre2s0p0oNnsme−(1FiAgultrheo8ubg)h,btuhtiswiintvhoglrveeadter
sflmucatluleartinounmsobfetrhoeffboeracde.s,Athsemdeanttaiowneerdeabcolovsee,rthfietsteofluHcteuratztiioannsrensopromnaslely(Fwigouurled8bbe),rbemutowveitdhwgritehataenr
falruticfituciaatliodnisssiopfatthioenfoterrcme.,Abustminenthtiiosnveadlidaabtoiovne,etxhaemseplfelu,cittuisantiootneswnoorrthmyatlhlyatw,aosuelxdpbeectreedm,doivseodrdwerietdh
astnruacrttuifriecsiainlcdreisassiepdattihoenatmerpmli,tubduetoifnthtehipservtaulridbaattiioonn. eUxsaimngpEleq,uiattiiosnn(o1t)eawnodrathssyumthiantg, athsaetxυp=ec0te.2d5,, disordered‚ structures increased the
amplitude of the perturbation. Using Equation (1) and assuming the Young s modulus w‚as calculated to be 12.4 kPa. that υ = 0.25, the Young s modulus was calculated to be 12.4 kPa. Figure 8a presents the normal
contact force as a function of displacement calculated from the simulations using the disorder model with a spring constant of 200 Nm−1. Although this involved a smaller number of beads, the data were a closer fit to a
Hertzian response (Figure 8b), but with greater fluctuations of the force. As mentioned above, these fluctuations normally would be removed with an artificial dissipation term, but in this validation example, it is noteworthy
that, as expected, disordered structures increased the amplitude of the perturbation. Using Equation (1) and assuming that υ = 0.25, the Young’s modulus was calculated to be 12.4 kPa. (a) (b) Figure 88..(a()aC)ontact
forcefoarscaefuanscatiofnuonfcdtiiospnlaocfemdeisnpt;la(bce)mcoenntat;ct(fbo)rcceoanstaacfutnfcotriocen oafsdiaspfluacnecmtieonnt3o/2f.
Bdoistphlwaceermeecanltc3u/2.laBtoedthfrwomerethcealsciumlautleadtiofnrosmoftahne esliamstuiclastpiohnesricoaflapnaretliacsleticbasspehderoincatlhpeadritsioclredebramseoddoenl.
Tthheeddiassohredderlimneosdaerle.Tthheefidtassohfetdhleinsiemsaurleattehdedfiatstaotfo thesHimeurtlzattehdeodrayt.a to the Hertz theory. ChemEngineering 2020, 4, x FOR PEER REVIEW 8 of 14 Figure 9 presents the
contours of the calculated sub-surface shear stresses, for which due to the randoFmigulorcea9tiopnreosfenthtes tbheeadcos,ntthoeuprsatotfertnhewcaaslcnuolattseimdisluarb-isnufroframcetsohtehaart sotfrethsseecsu,fboicr
lwathtiicceh cdeullemtoodtheel. Hraonwdoevmerl,otchaetimonaoxifmthuembevaadlus,ethweapsaatltseornfowuansdnaott asidmeiplathrionffaobrmoutto0t.h5aatboeflothwe tchuebisculraftatcicee, wcehllicmhowdaesl.
sHimowilaervteor, thecmubaixcimlauttmicevmaloudeewl.as also found at a depth of about 0.5a below the surface, which was similar to the cubic lattice model. FFiigguurree 9.9.CoCnotnotuorusrosf
mofaxmimaxuimmushmearshsteraersssbterensesatbhetnheeaptharttihclee spuarrftaicceleesstiumrfaatceed fersotmimtahteedsimfruolmatiotnhse osfimthuelaptaiortnicsloefbtahseedpaornticthleebdaisseodrdoenr
tmhoeddeils.order model. 3.2. Viscoelastic Spherical Particles 3.2. Viscoelastic Spherical Particles 3.2.1. Cubic Lattice Cell Model 3.2.1. Cubic Lattice Cell Model Figure 10 presents the contact force as a function of time
during compression and relaxation calculFaitgeudrefro1m0pthreesseinmtsultahteiocnosnotfacatvfiosrccoeelastaicfsupnhcetrioicnalomfotidmeel bdausreidngoncothmepcruebsisciolanttaicnedcreellladxuartiinogn
ccoamlcuplraetsesdiofnrowmitthheassipmruinlagticoonnssotafnatvoifsc2o0e0laNstmic−s1pahnedricaadlmasohdpeoltbcaosnesdtanttohfe1c0u−b6icNlmatt−i1ces.ceTlhldeuforirnceg
acnodmdpirsepslsaicoenmweintthdaastaprwinegrecfiotntsetdantot oEfq2u0a0tiNonm(2−1)ainndoraddearsthopoobttacionntshtaenvtaolufe10o−f6 AN,man−1ds.hTehnecefoYrocuenagn’ds
mdiospdlualcuesmuesnintgdaEtqauwateiroenf(it1t)e.dIttowEasqufoautinodn t(o2)bien3o6r.d8eMrtPoa,owbthaiinchthweavsaslluigehotlfyAl,esasndthhanentcheatYfoourntgh’es emlaosdtiuclpuasrutiscilneg. Equation (1). It was
found to be 36.8 MPa, which was slightly less than that for the elastic particle. An analysis of the force relaxation after compression was performed using a previous method for experimental compression of an agarose
micro-particle [35]. Instantaneous ( ?, corresponding to t = 0) and long-time ( ?, corresponding to t = ∞) elastic moduli were then calculated. The values were found to be ? = 54 MPa and ? = 34 MPa. The Hertzian
Young’s modulus was close to the calculated relaxed value. The relaxation times are ?= 0.49 s and ?= 4.6 × 10−5 s. modulus using Equation (1). It was found to be 36.8 MPa, which was slightly less than that for the
elastic particle. An analysis of the force relaxation after compression was performed using a previous method for experimental compression of an agarose micro-particle [35]. Instantaneous ( ?, corresponding to
Cth=em0E)nagnindeelroinngg2-0t2i0m,4e, 3( 0?, corresponding to t = ∞) elastic moduli were then calculated. The values9wofe1r5e found to be ? = 54 MPa and ? = 34 MPa. The Hertzian Young’s modulus was close to
the calculated relaxed value. The relaxation times are ?= 0.49 s and ?= 4.6 × 10−5 s. Figure 1100.. Contact force aass a function ooff time during compression and relaxation calculated from tthhee simulations
oofftthheeviscoelastic spherical particle bbaasseeddoonntthheeccuubbiciclalatttitciceecceellllmmooddeel.l. An analysis of the force relaxation after compression was performed using a previous method for experimental
compression of an agarose micro-particle [35]. Instantaneous (E0, corresponding to t = 0) and long-time (E∞, corresponding to t = ∞) elastic moduli were then calculated. The values were found to be E0 = 54 MPa and
E∞ = 34 MPa. The Hertzian Young’s modulus was close to the calculated relaxed value. The relaxation times are t1= 0.49 s and t2= 4.6 10−5 s. × ChemEngineering 2020, 4, x FOR PEER REVIEW 9 of 14 3.2. 2. Disorder
Model 3.2. 2. Disorder Model Figure 11 presents the simulated contact force as a function of time for a viscoelastic spherical
1p0a−r6tiNclme−b1asse.dThoenftohrceedainsodrddeisrpmlaocedmelewntitdhaataswpreirnegfictotendsttaonEtqoufa2t0io0nN(2m)−i1naonrddeardtoasohbptoatincothnestvaanltuoef
particFleigbuarseed11opnrtehseendtissothrdeesrimmuoldaeteldwcitohntaascptrfionrgcecoasnsatafunntcotfio2n00oNftmim−e1 afonrda vdiascsoheploasttciocnsspthaenrticoafl o1f0A−6, Nfrmom−1 ws.hTichhe
tfhoercYeoaunndg‚dsimspoldacuelmusewntadsaotbatawineered fuitstiendg tEoqEuqautiaotnio(n1)(a2s) 1in12oKrdPear, twohoibchtawinatshgerveaatleure tohfanAt,hferocmalcwulhaitcehd tvhaeluYeofuorngth’se
melaosdtiuclupsarwticalse.obtained using Equation (1) as 112 KPa, which was greater than the calculated value for the elastic particle. Figure 11. Contact force as a function of time during compression and relaxation
calculated from the sFimiguulraeti1o1n.sCoofnthtaecvtfisocroceelaasstaicfsupnhcetiroicnaolfptairmtiecldeubraisnegdcoonmtphreedssiisoonrdaenrdmroeldaexla.tion calculated from the simulations of the viscoelastic
spherical particle based on the disorder model. An analysis of the force relaxation after compression was performed using the procedure used for the cuAbinc
alantatilcyesimsoodfethl.eTfhoerceelarsetliacxmatoiodnulauftsevracloumespwreesrseiofonuwndastopebrefoEr0m=ed20u3sKinPgatahnedpEro∞ce=d2u0r0e KusPead. Tfhoer tHheerctuzibainc lYaottuicnegm’somdoedl.uTlhues
ewlaasstilcesmsothdaunlutshveaclaulecsulwateerde froeulanxdedtovbaelu e?, in=d2i0c3atKinPga tahnadt t h?e f=or2c0e0 KPa. The Hertzian Young’s modulus was less than the calculated relaxed value, indicating that the
force was not fully relaxed after compression. The relaxation time ? = 0.82 s and ?= 2.83 × 10−5 s. It is noteworthy that since the dashpot accounted for the physical viscosity of the material, artificial dissipation was not
necessary in these examples. 3.3. Application of the Elastic Disorder Model: Hard Core-Soft Shell and Soft Core-Hard Shell Spherical was not fully relaxed after compression. The relaxation time t1 = 0.82 s and t2= 2.83
10−5 s. It × is noteworthy that since the dashpot accounted for the physical viscosity of the material, artificial dissipation was not necessary in these examples. 3.3. Application of the Elastic Disorder Model: Hard Core-Soft
Shell and Soft Core-Hard Shell Spherical Particles under Compression In this section, we consider spherical inhomogeneous particles composed of a hard core-softer shell (HC-SS) and a soft core-harder shell (SC-HS). The
models were based on a disorder lattice with 6065 beads. The beads were connected with springs to their neighbours. The hard regions of the particles were modelled using a larger spring constant than that for the soft
part. The ratios of shell thickness, h, and the particle radius, r, were set to be 0.5, 0.2, and 0.05. A visualization of the shell thickness and particle radius is presented in Figure 12. A small artificial damping force (1−10
Nm−1.s) was added to the beads, which was proportional to the relative velocity of the beads, in order to damp the kinetic energy from the system and obtain a smoother compression force. Two parallel solid planes were
positioned on the surface of the particle in order to simulate diametric compression, as described in the previous section. Using Equation (1) and assuming that υ = 0.25, the Young’s modulus was
CcahelmcuElnagtiendeerfiongr 2e0a2c0h,4c,xasFeO.R PEER REVIEW 10 of 14 Figure 12. Illustration of shell thickness (h) and particle radius (r). Figure 13 presents the force as a function of fractional deformation (δ/2r) of
HC-SS particles with different values of kcore and h/r. Figure 14 presents the force as a function of fractional deformation (δ/2r) of SC-HS particles with different values of kshell and h/r. The force profiles in Figures 13 and
14 can be compared with experimental data to simplify theoretical equations for small deformation e.g. for microcapsules [36]. By comparing Figures 13a and 14a, for the deformation up to 5%, it may be seen that the
change in kshell affected the deformation force more significantly than the change in kcore. Figure 13a shows that by reducing kshell from 200 to 20 Nm−1, the deformation force is now just about 11% of the initial value;
while in Figure 14a, by reducing Icore from 200 to 0.2 Nm−1, the force now is about 67% of the initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell. Increasing the h/r ratio
from 0. 05 to 0.2 changed the deformation force more significantly than increasing the h/r ratio from 0. 2 to 1, as presented in Figures 13b and 14b for the deformation up to 5%. Increasing the h/r ratio from 0. 5 to 1
did not change the force significantly. Moreover, it may be seen from Figures 15b and 16b that changing the h/r ratio from 0.5 to 1 did not change the lumped Young’s modulus significantly. In(tah)ese cases, the h/r ratio
of 0.5 could be consid(ebr)ed as a cut-off ratio where thereFwigouureld13b.e(an)oThsiegfnoirficecaanstacfhuannctgioentoftfhreacmtioondaullduesf.ormation (δ/2r) of HC-SS particles (h/r = 0.2 and different kshell) and a
hard solid particle (kshell = kcore = 200 Nm−1). (b) The force as a function of fractional deformation (δ/2r) of HC-SS particles (kcore = 200 Nm−1 and kshell = 20 Nm−1) with different values of h/r and a soft solid
particle (h/r = 1, kcore = kshell = 20 Nm−1). Figure 12. Illustration of shell thickness (h) and particle radius (r). (a) (b) FigurFeig1u3r.e (1a3). (Tah)eThfeorfocerceasasaa function
oofffrfarcatciotinoanladlefdoermfoartmioant(iδo/n2r)(δoo/ff2Hr)Co-SfSHpCar-tSicSlepsa(rht/irc=le0s.2(han/rd= 0.2 and ddiiffffeerreenntt kkshsehlle)lla)nadnadhaarhdasrodlisdopliadrtipcalert((ikkcsshhleeellll
=(kkkscchoorreeel=l =20k0coNrem=−−11))2..0(b0)NThme−f1o)r.ce(ba)s Tahfuenfcotirocne ooaffsfarafcutinonctailon of fvraalcuteidaosnenofdaoflrahmds/reoafftaotinosrnodml(iaδad/ts2ipoora)fnrtoot(isffcδoHl
/el2iCr(dh-)S/porSaf=prH11tai,,rCckktlic-cecooSrrlee(eS=hs
/pkkr((sskkahh=cceeroollllrrtee=i1=c,2l2ke00csNo0r(emNkc=mo−−11r)ek)−−..s11=haenl2ld0=0kk2ssNhh0eellllm=N−2m10−Na1nm)d.−−11k)swhelilth=d2if0feNremnt−v1a)lwueisthooffdhi/ffrerent ChemEngineering
2020, 4, x FOR PEER REVIEW 11 of 14 By comparing Figures 13a and 14a, for the deformation up to 5%, it may be seen that the change in kshell affected the deformation force more significantly than the change in kcore.
Figure 13a shows that by reducing kshell from 200 to 20 Nm−1, the deformation force is now just about 11% of the initial value; while in Figure 14a, by reducing Icore from 200 to 0.2 Nm−1, the force now is about 67%
of the initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell. Increasing the h/r ratio from 0. 05 to 0.2 changed the deformation force more significantly than increasing the h/r
ratio from 0. 2 to 1, as presented in Figures 13b and 14b for the deformation up to 5%. Increasing the h/r ratio from 0. 5 to 1 did not change the force significantly. Moreover, it may be seen from Figures 15b and 16b
that changing the h/r ratio from 0.5 to 1 did not change the lumped Young’s modulus significantly. In these cases, the h/r ratio of 0.5 could be considered as a cut-off ratio where there would be no significant change to the
modulus. Based on the results, a(lau)mped Young’s modulus could be calculat(ebd) using Equation (1), which
rFeipgurerFseiegn1u4tre.ed(1at4h).e(Tae)hqTeuhfieovrafcoleercnaetsaYsaoaufunngc’stimonoodofuflfurasctthioenpaalrtdicelfeorwmoautl(idδo/n2hra)(vδoo/ef2fiSrfC)it-oHwfSSepCrea-rHhtiocSmlepsoa(grhte
/rinc=leeo0s.u2(sha.n/Frdi=gu0r.e2 1a5ndanddiffFeigreunrtekkc1ocr6eo)repa)nredasnaednhatartdhhesaorllduidmspopalierdtdicplYeao((rkuktccoinorcreegl=e’sk(shkmecll)oo.red(bu=)lTikhoshefelfHlo)r.Cce(-SbaSs)
aTanfhudencSftoCior-cnHeooSaffsfpraaacrtftiuiocnnleacsltidaoesnfoaorfmfufanrtcaiotcintoionnoafl khsaherldlo(srho/krlci=odre11,p,,takhkcrcoeotrreieYc=loekkusshh(eenhllll/g=r’2s=0m01,Nokdmcou−r−1l1eu))..=s
kinshcerlle=as2e0s0foNrmH−C1-)S.S and SC-HS particles, respectively. For the HC- kdseheflolaroomnffdSaCtki-cooHrne,SorpefasSrptCiec-
clHetisvS((ekkpclcooyraree,r=tai2ncNldemsa(s−−11kackkosshhrfeeeullll=nc22t0i0NonNmmo−f1t)khwsehietlhhl/=rdir2faf0etr0ioeNn.tAmvsa−le1ux)epsweooicfftthhe
/drd,aiffwndeirtaehnhiatnrvcdraesloualseiidsnpogafvrhtai/crluleaensdoaf SS particle, increasing the h/r ratio decreased the Young’s modulus, while for the SC-HS particle, it increased the value. (a) (b) FigurFeig1u5re.
1(5a.)(La)umped Young’s modulusooff HC-SS particloefsFoigfuFreig1u2area1s2aafuansctaiofnuonfctkisohelnl. (obf) kshell. (b) Lumped Young’s modulusofof HC-SS particloefsFoigfuFriegu12rbe a1s2ba
fausnactfiounncotfiho/nr.of h/r. (a) (b) ChemEFnigginuereerin1g5.20(a20),L4u,3m0ped Young’s modulus of HC-SS particles of Figure 12a as a function of kshell. (b1)2 of 15 Lumped Young’s modulus of HC-SS particles of
Figure 12b as a function of h/r. Figure 16. (a) Lumped(aY)oung’s modulus of SC-HS particles of Figure(1b3)a as a function of kcore. F(big).uLruem16p.e(da)YoLuunmgp’sedmoYdouulnugs’sofmSoCd-HulSuspaorftiScCle-
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calculated using Equation (1), which represented the equivalent Young’s modulus the particle would have if it were homogeneous. Figures 15 and 16 present the lumped Young’s moduli of HC-SS and SC-HS particles as a
function of kshell and kcore, respectively, and as a function of the h/r ratio. As expected, with increasing values of kshell or kcore, the Young’s modulus increases for HC-SS and SC-HS particles, respectively. For the HC-SS
particle, increasing the h/r ratio decreased the Young’s modulus, while for the SC-HS particle, it increased the value. 4. Conclusions It has been demonstrated that the LSM could accurately represent the deformation,
including the associated sub-surface stress fields, not only for elastic particles, but also for viscoelastic particles when linear springs were substituted with KV bonds. The disorder model was computationally more efficient
than that based on a cubic lattice cell and led to a more refined definition of particle shape. Although only spherical particles were investigated in the current study, the approach is readily applicable to more complex
shapes of the type that are often encountered in the pharmaceutical sector. The proposed technique could be employed, within a particle-based multiphysics model such as DMP, to model mechanical inhomogeneity, for
example the softening of a particle immersed in water could be modelled by coupling the Young’s modulus with the diffusion coefficient. It could also be extended to non-linear elastic deformation, plastic deformation, and
fracture by introducing non-linear springs, friction elements, and springs of limited extensibility. For example, the fracture strength is of particular interest for encapsulates. If compared with gluing DEM particles together to
model different shapes, the proposed technique provided not only accurate contact stresses, but also the stresses within the particle. The disadvantage, however, was in the greater computational cost. However, it was
considerably more convenient to implement than discrete finite elements, which require more complex material models. The proposed approach could also be adopted to develop effective interaction laws for
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