Turnitin Originality Report

7% match (Internet from 02-May-2020)
https:///www.mdpi.com/journal/ChemEngineering/special issues/Particle_Methods
\% match (Internet from 05-Apr-2020)
https:://www.mdpi.com/2076-3417/9/24/5369/htm
\% match (publications)
\% match (student papers from 02-May-2020)
Submitted to University of Tasmania on 2020-05-02
\% match (publications)
V Satheesthkumar, R Ganesh Narayanan. "Investigation on the influence of adhesive properties on the formability of adhesive-bonded steel sheets", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
$\%$ match (publications)
Vincenzo Russo, Luca Mastroianni, Riccardo Tesser, Tapio Salmi, Martino Di Serio. "Intraparticle Modeling of Non-Uniform Active Phase Distribution Catalyst", ChemEngineering, 2020
Mark T. Oakley, E. Grace Richardson, Harriet Carr, Roy L. Johnston. "Protein Structure Optimization with a "Lamarckian"' Ant Colony Algorithm",IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013
\% match (Internet from 19-Apr-2020)
http:///orca.cf.ac.uk/130531/1/materials-13-01328-v2.pd
chemengineering Article A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations Iwan H . Sahputra $1,2, *$, Alessio Alexiadis 1 and Michael]. Adams 11 School of Chemical Engineering, University wanh@petra.ac.id ?????????? Received: 10 March 2020; Accepted: 25 Apriil 2020; Published: 1 May 2020 ? ?????? Abstract: Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to allow the study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity, that are relevant to to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The model is
apolied to encapsulate particles with a soft outer shell due, for example, to the partial ingress of moisture. This was valid ated by the simulation of spherical homogeneous linear elastic and viscoelastic particles. The method
 t is computationally more expensive than DEM, but could be used to deffine more effective interaction laws, Keywords: Kelvin-Voigt viscoelastic bonds; coarse grained model; particle method; viscoelastic particles:
inhomogeneous particles 1. Introduction The Discrete Element Method (DEM)
and was been employod to study a range of pharraceutical manufacturing processes and products inclucidig powder mixing [1], aggomeration with
[2], and the release of Active Pharmaceutical Ingredients (APIs) from powder inhalation products [3]. Invariably, this has not involved inhomogeneous particles, and those of arbitrary shape have and without a liquid binder [2], and the release of Active Pharmaceutical Ingredients (APIs) from powder inhalation products [3]. Invariably, this has not involved inhomogeneous particles, and those of arbitrary shape have
been simulated by gluing primary particles together such that the interior is essentially rigid in order to minimise the computational cost, which is not representative of real particles [4]. An important example of mechanical .
inhomogeneity is the softening of particles due the presence of mointure during agglomeration ord dispersion/dissolution. In such cases, a a gradient of moisture content is developed with a corresponting gradient in the
mechanical properties. Another example is the encapsulation of APIs for which there is commonly a hard shell and a softer core. For particles formed from an organic polymer such as microcrystlline cellulose, the ingre of moisture will cause them to become viscoelastic. Mesh-free methods and, in particular, particle methods such as DEM are increasingly popular in the scientific community due to their ability to overcome some drawback f the conventional, mesh-based, numerical methods; see [5] for a revie is based on "computational particles" rather than on computational meshes [6,7]. In fact, there is a range of systems for which DMP can address problems that would be very difficult, if not impossible, for tratitional
multiphysics approaches. Examples are cardiovascular valves $[8,9]$, blood clotting [10], phase transitions [11], capsules' breakup [12,13], and fuzzy boundaries (e.g., a tablets' dissolution) [14]. In many of the above examples, the solid phase is often represented by a Lattice Spring Model (LMS) ChemEngineering 2020,4 , 30 , doi: $10.3390 /$ /chemengineering 4020030 www.mdpi. com/journal/chemengineering and involves both linear
and non-linear springs for modelling elastic materials. In the current study, the method is extended to viscoelastic materials by implementing the Kelvin-Voigt (KV) viscoelastic model that involves springs and also dashpot and non-linear springs for modelling elastic materials. In the current study, the method is extended to viscoelastic materials by implementing the Kelvin-Voigt (KV) viscoelastic model that involves springs and also dashpots
to represent the viscous friction. KV bonds have been proposed in the LSM literature, but only to model wave propagation in viscoelastic media (e.g., seismic wave propagation [15]), where the media are treated as orepresent the viscous friction. KV bonds have been proposed in the LSM literature, but only to model wave propagation in viscoelastic media (e.g., seismic wave propagation [15]), where the media are treated as
homogenous and no external forces are applied to the system. KV bonds have never been implemented to study the strain field of solid objects under the effect of external loads. Achieving this objective would provide particle-based multiphysics techniques (e.g., DMP) with the ability to model viscoelastic materials, which is currently not possible. The current study addresses the above shortcoming in the literature. For benchmark and validation purposes, the diametric compression of homogeneous spherical particles between parallel platens is described, which may be considered as a special case of indentation. A flat indenter or platen is widely used
especially for the diametric compression of single particles [16] and microcapsules [17]. Generally, they are loaded at a constant velocity to a specified displacement and unloaded, or alternatively held in position, to measure the stress relaxation. A quasistatic model based on Hertz's contact theory has been employed to describe the interaction between the particles that are packed together to represent unconsolidated porous med lias
18]. The evolution of the permeability with the deformation was computed by the lattice-Boltzmann approach. Here, the approach is that macroscopic bodies (such as particles) are sub-divided into computational beads. 18]. The evolution of the permeability with the deformation was computed by the lattice-Boltzmann approach. Here, the approach is that macroscopic bodies (such as particles) are sub-divided into computational beads.
Each bead is connected to the nearest neighbours by linear springs or by KV bonds. It will be shown that for the spherical particle represented by beads connected by linear springs model, under diametric compression simulation, the relationship between force and displacement is nearly identical to the Hertz contact theory. In the current work, the KV model is compared initially with the theoretical results for a single viscoelastic bond. Then, elastic and viscoelastic spherical particle models including multiple bonds are developed and simulated under diametrical loading. Finally, applications of DMP to spherical particles composed of core and shell regions
with different properties are also presented to demonstrate the potential for inhomogeneous systems. 2. Materials and Methods 2.1. Theoretical Background 2.1.1. Hertz Theory for Elastic Normal Contact Force Hertz proposed a theory to analyse the contact of two elastic isotropic spherical solids by assuming linear elasticity and frictionless boundary conditions [19]. For diametric compression, a spherical body is in contact with two flat surfaces, and the radius of curvature of the flat surfaces is set to infinity. Since the total deformation is evaluated, it is divided by two [20], and therefore, the relationship between the force, FH, and the relative
surn
[isplater displacement of the plates, δ, is as follows: $\checkmark \mathrm{FH}=3(\mathrm{E1} 2 \cup R 2)$ 23/2, $-(1)$ where E , R, and \cup are the Young's modulus, radius, and Poisson's ratio of the particle, respectively. 2.1 .2 . Viscoelastic Normal Contact Force Fo
 (2) where δ and δ are the displacement and the rate of displacement, respectively. The elastic term is. the Hertzian contact force where A is the constant in the Hertz theory. The dissipative part has a
ChisemsiEpnagtiinveeerincogn20s2toa, n4t, xBFtOhRatPEwEaRsRdEeVrl ievWed independently in $[21,22,24]$. of 1122.1 .3 . Mass-Spring-Dashpot Models 2.1 .3 . Mass-Spring-Dashpot Models Figure depicts two particles of mass connected by KV model, which is defined as "'"KV," bondFaignudriem1pdleempiecntstetdwnoupmaertriieclaelslyoofsmdaessscrmibceodninnetchteednebxyt aseKctViomn. oWdehle, nwahiKchV
 applied to the model, the wdihsperleackeimsethnet swpirilinbgecofnusntacntitoannodfbtimseth, et,daasshopllontwwos: nstant. If such a force is applied to the model, the displacement will be a function of time, t, as follows:
 Mondel and Simulation In this section, we initially compare the numerical implementation of the spring and dashpot model nlwthitihs tsheecttihoneo, rweteicianlirtieaslulylitscofomrpaasriengthlee
vniuscmoeelraicsaticibmopnlde.mTehnetnat, iwone eoxftehnedstphreinsgtuadnydtodaaslhaprgoet gmeoodmeeltwryit(h spthheertihceaol) reinticlauldriensgulmtsuflotirpalesibnognledsv. iscoelastic bond. Then, we extend the
study to a large geometry (spherical) including multiple bonds. 2.2.1. Validation of a Single KV Bond 2.2 .1 . Validation of a Single KV Bond The KV bond was implemented numerically in LAMMPS [25] following the standard study to a large geometry (spherical) including multiple bonds. 2.2.1. Validation of a Single KV Bond 2.2.1. Validation of a Single KV B Bond The KV bond was implemented numerically in LAMMPS [25] following the standard vlaawlidaantdetNheewnutomne'rsiclaawlimofffilelumidenftlaotwionfoorf the smparisns-gsparnidngd-dasahshppoot,trmesopdeeclt, iavesliym,palse sshyostwemn iwnaEsqcureaatitoedn
(a3s). shToowvnaliindFatigeuthree 1 n, uamnderthicealdiimspplalecmemeenntattwioans ocfaltchuelamteadssfr-sopmritnhge-dsiamshuplaottiomnosdaenld, acosmimppalreedsytosttehme
and
siNm,umla=teOd. OdoiosOpllakcge,mke=nOts.2aNre/min, calnodseaargarnegeemoefnvtawluitehs tohfeb, aansalsyhtoicwalnsionluftigounr.e 2 , whAerseecmonisd
vhaelidmaatisosnowftahsepperefaordrms.eTdhbeysicmomulpaateridngditshpelacrceeeempeantards arerceoivnercylorseespaoognreseesmoefntthwesityhsttehme ainnaFliygtuicrael 1 sotloutthioant.calculated using Simulink (Version 9.1, The MathWorks Inc., Natick, MA, USA). As dAepiscetceodnidn VFaigliudraeti3o,nthweassimpuerlafotermdeddispblyacceommepnatrsinwgerteheincrceloespe
aangdrereemcoevnetrwy itrhestohoencsaelscuolfattehde vsyasluteemsfrinomFigSiumreullintok thAaftecratlhcuelfaotrecde angdrereemcoevnetrwy itrhestphoencsaelscuolfattehde vsy asluteemsfrinomfigsiumreu lintok. thAafttecrath thcueffaotrecde
. dyAsstadtee. pWictheedn itnheffiogrucerew3a,s rthemeosvimedu,Itahteed ispacemendtescrweaesreedirnapcildolsye, aangdreaesmtiemnet inwcirttehastehde, citaalcpuplaroteadchveadluaessymfrpotmotis ciamlluyltionkz. erAof.ter the force was applied, the displacement increased rapidly until it eached a steady state. When the force was removed, the displacement decreased rapialy, and as time increased, ir approached asymptotically to zero. A third validation was performed by comparing the displacement
response of the system in Figure 1 to a asinusoidal load (dynamic force), to the value calculated using Simulink (Version 9.1 , The MathWorks Inc. Natick, MA, USA), as shown in Figure 4 . Furthermore, in this case, the
 Figur1e t1o tao a constant force, whichis is removed afte6r s .
Fhi6geusb.rleuTeh3. eliRnbeelusipesoltnihnseeedoifsthpthelaedcseiysmpstleeanmctemcdaeelcpnuitclcataetledcduinlfartFoeimdguftrrhoeem1sittmoheuaslcaiomtinousnltaa, tnaiontndfo,trahcneed, rwtehdheilcrienhdeisliisrnecemailscoucvalealdctueadlfattuee
TimhuesuibnlilgnukSe.imlinueliinskt.he displacement calculated from the simulation, and the red line is calculated using Simulink. A third validation was performed by comparing the displacement response of the system close agreement with the calculated values. 2.2.2. Modelling the Diametric Compression of a Spherical Particle In DMP models, macroscopic bodies are sub-divided into computational particles (beads). Since in this work, we study KV bonds that can be used in DMP (or other particice-based multiphysics methods), we extended the validation to macroscopic spheres that accounted for multiple KV bonds. A sphere could be sub-divided into
computational beads in different ways. Here, we employed two approaches: the beads were arranged on (a) a regular cubic lattice and (b) an irregular tetrahedral lattice. Figure 4 . Response of the system depicted in Figur come
computational beads in different ways. Here, we employed two approaches: the beads were arranged on (a) a regular cubic lattice and (b) an irregular tetrahedral lattice. Figure 4. Response of the system depicted in Figure
to a sinusoidal loading force. The lines are the Figure 4. Response of the system depicted in Figure 1 to a sinusoidal loading force. The lines are the displacements calculated from the simulation, and the points are calculated using Simuln. displacements calculated from the simulation, and the points are calculated using Simulink. Figure 3 . Response of the system depicted in Figure 1 to a constant force, which is removed after 6 s .
ChemETnhgeinbeelruinegl2ino2eoi, $54 t$, h30e displacement calculated from the simulation, and the red line is calculated using 5 of 15 Simulink. ChemEngineering 2020 , 4 , X FOR PEER REVIEW 5 of 142.2 .2 . Modelling the Diametric Compression of a Spherical Particle In DMP models, macroscopic bodies are sub-divided into computational particles (beads). Since in this work, we study KV bonds that can be used in DMP (or other particlebased multiphysics metFhiogdusr)e, 4w. eReesxptoennsdeeodf tthheesvyasttiedmatdioepnictotemdiancFroigsucroeplictospahsienruessotihdaatl laocacdoiungntfeodrcfeo.rTmheullitniepslearkeVthebonds. A

dffipaugroenlyaleslbaystlicnsepahrseprersin (glisnoerarbsypkriVngbso) nwdas.sTchoimswpuotrekdfofocursceosmopnavriisscoone.laTshtiecictays(eKoVff lbionneadrs)s, parnidngths, e incafsaecto, hfapsubreeely eallarestaidcyspsthuedreiesd, llainnedarmsapssisi- nsgpsr) inwgacsubcoicmlaptutitceedcfeolirmcoomdeplasrairseonk. nT Tohwenctaosreeopfrelsineneatr
ansealnsdatrheeksntioffwnenstso
neoifghthbeoustrn|pgsuraeriey) seellaecsttiecahaopmporogperioautesilyso[2tr60]. p.icfomraatecruiablisciflatthteicceocnenliecwtiothn bneetawreesetnntehieghmbaosusres and ntehxet nsetiaffrnesets-

slirnleinaerasrpsrpinrginsgasnadn, dlaaltaeetrentsthtehseestehtehoeroerteictaiclavlavlauleusefsofroar paeprfeercfetcrytleylaeslatisctiscpshpehreerbeyboynolynlayccaoccuonutinntginfgor between two parallel compression planes, which araere represented bybyrerdedlines; (b) (ba) nanelementary ceclellolfoaf acubic lattice. The tetrahedral cells were created by discretising the sphere with a finite-element mesh generator. In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it a disordered model. Using this approach, less beads were required, but the calculation of the elastic modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 30 finite element grid generator [28]. As in the case of the cu attice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. The tetranedra celis were created by discretising the sphere w calculation of the elastic modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model with 5921 beads was created using an open-source 3 D finite element grid generator [28]. As ane case of the cubic lattice, the beads were connected to their neighbours either with linear springs or KV bonds to model, respectively, elastic and viscoelastic materials. Two parallel solid planes were applied to the article in order to simulate diametric compression. They exerted a force to compress the particle, where the magnitude of the force, $\mathrm{F}(\mathrm{r})$, is given by $[29]: \mathrm{F}(\mathrm{r})=\mathrm{S}(\mathrm{rb}$ Ri)2, $-(6)$ where S is the specified force constant, R the position of the plane and rb Ri is the distance from - the bead to the plane. The force is repulsive, and $\mathrm{F}(\mathrm{r})=0$ for $\mathrm{rb}>$ Ri. The force constant was set to be $1010 \mathrm{Nm}-2$ for all simulations in order to represent r igid
compression planes. During the compression loading simulations, one plane compressed the particle with a constant velocity for both the elastic and viscoelastic particle models, while the other was maintained static. For the viscoelastic particle, the displaced plane was held at its final position after the loading to allow for relaxation. The force and particle displacement were recorded during the simulations, and a time step of $10-11 \mathrm{~s}$ was used to integrate Newton's equations of motion. It is well known that the KV model can produce the creep and recovery responses of a two-bead system, as shown in Figure 3, but cannot model stress relaxation behaviour
However, as will be shown in the next section, for the many-bead spherical particle models connected with KV bonds, stress relaxation behaviour could be observed. This is because a many-bead particle model connected with KV bonds is similar to a generalized KV model, i.e., a viscoelastic material model composed of N Kelvin-Voigt units assembled in series. The generalized KV model has been employed, for example to study the viscoelastic properties of micro-cracked materials [30]. 3. Result and Discussion 3.1. Perfectly Elastic Spherical Particles 3.1.1. Cubic Lattice Cell Model Figure 6a presents the simulated force as a function of displacement for an elastic spherical particle based on the cubic lattice cell with a spring constant of $200 \mathrm{Nm}-1$. The data were compared against the Hertz theory predictions (Equation (1)) and the comparison depicted in Figure 6 b .
The force and displacement calculated from the simulations were nearly identical to the Hertz theory. The fluctuating behaviour in Figure 6 was due to slight numerical inaccuracies that artificilly perturbed the total energy he the system. Since the particle was perfectly elastic this energy was never dissipated and manifested itself as a high frequency perturbation. This is a known issue with the LSM, which in the literature is usually sonved by adding a small artificial dissipative term that damps these high frequencies [31]. In this study, since the focus was on validation, we did not implement any artificial dissipation. The calculated Young's modulus for the
Spherical particle was 39.1 MPa, which was in a close agreement with the Young's modulus of the elementary cubic lattice cell of 40 mpa calculated using Equation (5). The small discrepancy arose because, due to the cubic
cell internal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. The bulk shear stress, which is the sub-sufface principal stress difference, i.e., ((ol $\sigma 3) / / 2$, may be - calculated for each bead. The principal stresses ($\sigma 1$ and $\sigma 3$) were calculated from the virial stress and kinetic energy contributions [32] for each bead. The contours of the calculated shear stress are
presented in Figure 7 , where a is the contact radius and r is the particle radius. The shape of the particle based on the cubic lattice cell with a spring constant of $200 \mathrm{Nm}-1$. The data were compared against the Hertz prester
theory predictions (Equation (11) and the comparison depicted in Figure b . The force and displacement casculated from the simulations were nearly identical to the Hertr theory. The fluctuating behavaiour in figure 6 was
due to slight numerical inaccuracies that artificially perturbed the total energy of the system. Since the particle was perfectly elastic, this energy was never dissipated and manifested itself as a high frequency perturbation. This is a known issue with the LSM, which, in the literature, is usually solved by adding a small artificial dissipative term that dcoanmopustrshwesaes shiimghilafrrteoqutheantcciaeslcu[3la1t]]. dlnthtehoirsetsitcuadllyy, PEER REVIEW 7 of 14 The bulk shear stress, which is the sub-surface principal stress difference, i.e., $|(\sigma 1-\sigma 3)| / 2$, may be calculated for each bead. The principal stresses ($\sigma 1$ and $\sigma 3$) were calculated from the virial stress and kinetic energy contrib(au)tions [32] for each bead. The contours of th(eb) calculated shear stress are presefnigteudrei6n6..(Fa(i) agC) uorneta7c,t
worhcfeeorarecseafauissnctathioefnucnoocftndiotisanpcltaocfreamddieisunpst;; a acben) mdcoernnttia; sct(tbfho)erccepoanasitataiccftulenfoctrraicodeniuoafssd.aiTsphflueancsechmtioaenpnet30/02f.f the
 discrepancy arose because, due to the cubic cell internal structure, the bead model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model. Figure $77 .$. contours of the sub-surface shear stresses estimated from the simulations using the cubic lattice cell. 3.1.2. Disorder Model 3.1.2. Disorder Model simuFlaitgiuonres 8 uasipnrgetsheentdsisthoredneorrmmoadleclowntiathctafosprcreinags

 Hertzian response (Figure 86), but with greater fluctuations of the force. As mentioned above, these fluctuations normally would be removed with an artificial dissipation term, but in that, as expected, disordered structures increased the amplitude of the perturbation. Using Equation (1) and assuming that $u=0.25$, the Young's modulus was calculated to be 12.4 kPa . (a) (b) Figure 88 ... (a) ()aC) ontact
forcefoarscaefuanscatiofnuonfcdtiospnlaocfemdeisnpt; la(bce) mcoenntat; ct (fbo)rcceoanstaacfutnfcotriocen oafsdiaspfluacnecmtieonnt3o/2f. orcefoarscaefuanscatiofnuonfcdtiospnlaocfemdeisnpt; Ia(bce) mcoenntat; Ct (fbo) rcceooanstaacfutnfcotriocen oafsdiaspfluacnecmtieonnt $30 / 2 \mathrm{~F}$.
 contours of the calculated sub-surface shear stresses, for which due to the randofmigulorcea9tiopnreosfenthtes tbheeadcos, ntthoeuprsatotfertnhewceasticnuolattseimdisisluarb- isnufroframcetsontehaert sotfrethsseecsu, fb
 during compression and relaxation calculFaitgeudrefro1m0pthreesseinmtsultahteiocnosnotfacatvfiosrccoeelastaicfsupnhcetrioicnalomfotidmeel bdausreidngoncothmepcruebsisciolanttaicnedcreellladxuartiinogn

mdiospdlualcuesmuesnintgdaEtqauwateifoenf(it1t)e.diltowEasqufoautinodn $\mathrm{t}(0$ 2) bien 306 . d8eMrtPoo,owbthaiinchthweavsaslluigehotlfyal, esasndthhanentcheatyfoourntgh'es emliosdtiuclpuasrutissilneg. Equation (1). It was found to be 36.8 MPa, which was slightly less than that for the elastic particice. An aralysii of the force relaxation after compression was performed using a previous method for experimental compression of an agarose
micro-particle [355 . Instantaneous ($E 7$? correspanding to $t=0$) and long-time (E ? , crresponding to $t=w$) elastic moduli were then calculated. The values were found to bel? $=54 \mathrm{MPa}$ and $E ?=34 \mathrm{MPa}$. The Hertzian

 .
. E $\infty=34$ MPa. The Hertzian Young's modulus was close to the calculated relaxed value. The relaxation times are $t \mathrm{tr}=0.49 \mathrm{~s}$ a
Model
3.2. 2. Disorder Model Figure 11 presents the simulated contact force as a function of time for a viscoelastic spherical
1pOa-r6tiNclme-blasse.dThoenftohrceedainsodrddeisrpmlaocedmelewntitdhaataswpreirnegfictotendsttaonEtqoufa2t0ioOnN(2 m) -il naonrddeardtoasohbptoatincothnestvaaniltuoef
 thhoercYeoaunndg,dsimspoldacuelmusewntadsaotbatawineered fuitstiendg tEoqEuqautiaotnio(n1)(a2s) 1in120KrdPear, twohoibchtawinatshgerveaatleure tohfanAt,hferocmalcwuhaitcend tvhaeelureofuorngth se
melaosdtiuclupsarwticalse.obtained using Equation (1) as 112 KPa , which was greater than the calculated value for the elastic particle. Figure 11 . Contact force as a function of time during compression and relaxation
calculated from the sFimiguuraetion Sherical particle based on the disorder model. An analysis of the forse relaxation aftor compression was performed using the procedure used for the cuAbinc
wlaassticesm folly $t \geqslant=2.83 \times 10-5 \mathrm{~s}$. It is notevorthy that since the dashpot accounted for the physical viscosity of the material artificiail dissipation was not $10-5 \mathrm{~s}$. It \times is noteworthy that since the dashpot accounted for the physical viscosity of the material, artificial dissipation was not necessary in these examples. 3.3. Application of the Elastic Disorder Model: Hard Core-Sof hell and Soft Core-Hard Shell Spherical Particles under Compression In this section, we consider spherical inhomogeneous particles composed of a hard core-softer shell (HC-SS) and a soft core-harder shell (sC-HS). The models were based on a disorder lattice with 6065 beads. The beads were connected with springs to their neighbours. The hard regions of the particles were modelled using a larger spring constant than that for the sot
part. The ratios of shell thickness, h, and the particle radius, r. were set to be $0.5,0.2$, and 0.05 . A visualization of the shell thickness and particle radius is presented in Figure 12 . A small artificial damping force ($1-10$
. 10
 HC-SS particles with different values of kcore and h / r. Figure 14 presents the force as a function of fractional deformation ($\delta / 2 \mathrm{r}$) of SC - HS particles with different values of kshell and h / r. The force profiles in Fig . hange in kshell affected the deformation force more significantly than the change in kcore. Figure 13 a shows that by reducing kshell from 200 to $20 \mathrm{Nm}-1$, the deformation force is now just about 11% of the initial value; while in Figure 14 a, by reducing Icore from 200 to $0.2 \mathrm{Nm}-1$, the force now in about 67% of the initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell. Increasing the h / r ratio
from 0.05 to 0.2 changed the deformation force more significantly than increasing the h / r ratio from 0.2 to 1 , as presented in Figures 13 b and 14 b for the deformation up to 5%. Increasing the h / r ratio from 0.5 to 1
 hard solid particle ($k s h e l l=k c o r e=200 \mathrm{Nm}-1$). (b) The force as a function of fractional deformation ($\delta / 2 \mathrm{r}$) of HC -SS particles (k core $=200 \mathrm{Nm}-1$ and $\mathrm{kshell}=20 \mathrm{Nm}-1$) with different values of h / r and a soft solid

offfrfarcat

 figure 13 a shows that by reducing kshell from 200 to $20 \mathrm{Nm}-1$, the deformation force is now just about 11% of the initial value; while in Figure 14 a , by reducing Icore from 200 to $0.2 \mathrm{Nm}-1$, the force how is about 67%.
 that changing the h / r ratio from 0.5 to 1 did not change the lumped Young's modulus significantly. In these cases, the h / r ratio of 0.5 could be considered as a cut-off ratio where there would be no significant change to th Modulus. Based on the results, allau) Mped Young's modulus could be calculat(ebd) using Equation (1), which
FFeipgurerfseiegn1u4tre.ed(1 at(hh).e(Tae) haTeunfieovrafcoleercnaetsaY saaaufung

clHetisvS(ekkpclcooyraree, r=tai2ncNIdemsa(s--11kackkosshhrfeeeulll =nc22t0iONonNmmo-f1t)khwsehietlhhl/=rdir2faf0etrOioeNn.tAmvsa-lelux) epsweooicfftthhe
drd, aiffwndeirtaehnhiatnrvcdraesloualseiidsnpogafvrntai/ crluleaensdoaf SS particle, increasing the h / r ratio decreased the Young's modulus, while for the SC-HS particle, it increased the value. (a) (b) FigurFeig1u5re
(5a.)(La) umped Young's modulusooff HC-SS particloefsFoigfuFreiglu2areais2aafuansctaiofnuonfctisoheinl. (obf) kshell. (b) Lumped Young's modulusofof HC (SS particloefsfoigfuFriegu12rbe als2ba

 calculated using Equation (1), which represented the equivalent Young's modulus the particle would have if it were homogeneous. Figures 15 and 16 present the lumped Young's moduli of HC - SS and SC -HS particles as a
function of kshell and kcore, respectively, and as a function of the h / r ratio. As expected, with increasing values of kshell or kcore, the Young's modulus increases for HC -SS and SC -HS particles, respectively. For the HC-SS particle, increasing the h / r ratio decreased the Young's modulus, while for the SC-HS particle, it increased the value. 4. Conclusions It has been demonstrated that the LSM could accurately represent the deformation,
including the associated sub-surface stress fields, not only for elastic particles, but also for viscoelastic particles when linear springs were substituted with KV bonds. The disorder model was computationally more efficient han that based on a cubic lattice cell and led to a more refined definition of particle shape. Although only spherical particles were investigated in the current study, the approach is readily applicable to more complex shapes of the type that are often encountered in the pharmaceutical sector. The proposed technique could be employed, within a particle-based multiphysics model such as DMP, to model mechanical inhomogeneity, for
example the softening of a particle immersed in water could be modelled by coupling the Young's modulus with the diffusion coefficient. It could also be extended to non-linear elastic deformation, plastic deformation, and racture by introducing non-linear springs, friction elements, and springs of limited extensibility. For example, the fracture strength is of particular interest for encapsulates. If compared with gluing DEM particles together to model different shapes, the proposed technique provided not only accurate contact stresses, but also the stresses within the particle. The disadvantage, however, was in the greater computational cost. However, it was
 and agreed to the published version of the manuscript. Funding: This research was funded by Engineering and Physical Sciences Research Council, Grant Number EP/ MO2959X $1 \mathbf{1}$. Acknowledgments: The computations
 orce (Kelvin-Voigt model) h shell thickness HC -SS hard core-softer shell k spring constant KV Kelvin-Voigt I length of an edge of the cell LSM Lattice Spring Model m mass $\mathrm{r} r$ radius rb -Ri distance from the bead to the compression plane Ri position of the compression plane $\sigma 1$, σ principal stresses S specified force constant SC - -SS soft core-harder shell \cup Poisson's ratio X distance from equilibrium position References 1 . Alian, M.; Ein-
Mozaffari, F.; Upreti, S.R. Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM). Powder Technol. 2015, 274, 77-87. [CrossRef 2 . Ketterhagen, W.R.; am Ende, M.T.; Hancock, B.C. Process modeling in the pharmaceutical industry using the discrete element method. J. Pharm. Sci. 2009, 98, 442-470. [CrossReff] [PubMed] 3. Yang, J.; Wu, C..-Y.; Adams, M. DEM analysis of the effect of particle-
. systems: From theoretical developments to applications. Chem. Eng. Sci. 2015, 127, 425-465. [CrossRef] 5. Garg, S.; Pant, M. Meshfree methods: A comprehensive review of applications. Int. J. Comput. Methods 2018, $4=4=4=\mathrm{wav}$
 (2) 20.
 2008, 78, 051304. [CrossRef] [PubMed] 23. Zheng, Q.J._ Zhu, H.P.; Yu, A.B. Finite element analysis of the contact forces between a viscoelastic sphere and rigid plane. Powder Technol. 2012, 26, $130-142$. [CrossRef] 24.

 Nguyen, S. Generalized Kelvin model for micro-cracked viscoelastic materials. Eng. Fract. Mech. 2014, 127, 226-234. [CrossRef] 31. Chen, H.; Lin, E., LLu, Y. A novel Volume-Compensated Particle method for 2D elasticity
nd plasticity analysis. Int. J. Solids Struct. 2014, 51, 1819-1833. [CrossRef] 32. Thompson, A.P.; Plimpton, S.J.; Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions.]. Chem. Phys. 2009, 131, 154107. [CrossRef] [PubMed] 33. Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1987. 34. Lee, S.C.; Ren, N. The Subsurface Stress Field Created by Three-Dimensionally Rough Bodies in Contact with Traction. Tribol. Trans. 1994, 37, 615-621. [CrossRef] 35. Yan, Y.; Zhang, Z.; Stokes, J.R.; Zhou, Q.Z.; Ma, G.H.; Adams, M.J.

