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Abstract
This study proposes a model based on the combination of Smoothed Particle Hydrodynam-

ics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simula-

tion of dispersed solid-liquid flows. The model can deal with a large variety of particle types

(non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined,

free-surface, microscopic), and scales (from microns to meters). Various examples, ranging

from biological fluids to lava flows, are simulated and discussed. In all cases, the model cap-

tures the most important features of the flow.

Introduction
The flow of solid-liquid suspensions is a generic problem which poses many challenges to sci-
entists and industrialists across many different areas. Applications range widely from process-
ing of food and pharmaceuticals, through oil and mining industries, to blood and biological
applications. Such flows involve a large array of complex phenomena on a wide range of scales,
and the reciprocal interaction of liquid and dispersed solids creates a very complex dynamics,
which often includes particle deformation, breakage, degradation, melting, swelling, erosion,
aggregation etc. The variety of phenomena occurring in these flows can be divided in three
main categories mutually linked in a feedback mechanism (see Fig 1): fluid phenomena, solid
phenomena and contact phenomena. Traditionally, specific modelling techniques have been
developed by focusing on certain specific aspects of the flow and simplifying the others.
Computational Fluid Dynamics (CFD), for instance, accurately describes the fluid dynamics,
but the solids phase is simplified by the point-particle assumption. Other techniques, such as
the Discrete Element Method (DEM) provide a good account of the inter-particle contact
forces, but it cannot handle phenomena such as solid-liquid mass transfer or melting/solidifica-
tion (softening and melting of solid materials has been modelled with DEM [1], but the dy-
namics of the liquid, once melting has occurred, requires a different modelling technique).
Computational methods dedicated to solid mechanics, on the other hand, describes the elastic
and plastic deformations in the solid, but the external stresses coming from the fluid must be
known in advance and provided as boundary conditions.

In order to achieve a more sophisticated description of these systems, hybrid models have
been suggested. There are, however, some major issues that have, so far, limited the use of this
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type of modelling in engineering. The variety of models available for each phenomenon and
the possibility of combining them in a hybrid approach, for instance, have led to an uncon-
trolled proliferation of hybrid models. There are studies, just to name a few, where DEM is cou-
pled with the CFD [2]; where Lattice Boltzmann (LB) is coupled with DEM [3], Smoothed
Particle Hydrodynamics (SPH) with Molecular Dynamics (MD) [4], DEM with SPH [5] and
MD with CFD [6]. Each of these has certainly its advantage, but the variety of approaches has
created a very heterogeneous and disconnected environment, which, eventually, represents a
barrier to the diffusion of these methodologies outside the academic world and, sometimes,
even outside the narrow circle of specialists of a certain specific method.

The goal of this paper is not so much to propose a new hybrid model by coupling two meth-
ods that have so far escaped the “hybrid-frenzy”, but rather to create a common framework
that supports and facilitates the linkage of different models in a hybrid fashion. The objective,
ultimately, is tomodel-by-models, that is the ability to link, as if they were Lego bricks, the most
suitable modelling techniques in order to achieve a complete representation of the system
under investigation. Models such as CGMD, SPH and DEM share a common discrete or parti-
cle-based paradigm and, for this reason, seem well suited as basis for a unified modelling frame-
work. If we observe, in fact, the typical flowchart of a CGMD, SPH or DEM code (Fig 2), the

Fig 1. Fluid dynamics, contact forces and solid mechanics in solid-liquid flows and somemodelling techniques available for each case.

doi:10.1371/journal.pone.0124678.g001
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Fig 2. Structure of a typical particle-based algorithm with the internal forces routine highlighted.

doi:10.1371/journal.pone.0124678.g002
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only difference is the routine that explicitly calculates the internal forces. In SPH these are hy-
drodynamic forces, in DEM contact forces, and in CGMD deformation forces, but, except for
that, the algorithm is practically the same in all cases.

A systematic literature review on SPH, CGMD, DEM and hybrid methods is beyond the
scope of this paper. The interested reader can refer to [7–11] for a more comprehensive survey.

Before concluding this section, a few words on the terminology are necessary. In this study,
we deal with two types of discrete entities both defined as “particles”: real particles, which are
minute portions of solid matter dispersed in the flow, and computational particles, which are
notional particles used to discretize both the fluid and the real particles. A real particle, there-
fore, is made of several computational particles. In order to avoid confusion the adjectives real
or dispersed are used to indicate the former, and computational or elemental to indicate the lat-
ter. Additionally, the terms SPH-particle, DEM-particle or CGMD-particle are employed to in-
dicate elemental particles used by a specific model.

Towards a Unified Computational Framework
In particle-based modelling, the information is lumped into discrete entities that can be seen in
two alternative ways: as Lagrangian nodes of a moving mesh whose position is updated during
the simulation according to certain rules, or as “lumps” of matter that move according to the
laws of classical mechanics

mi

dvi

dt
¼ mi

d2ri
dt2

¼
X
i 6¼j

Fi;j þ
X

FE; ð1Þ

wherem is the mass of particle i, v its velocity, r its position, FE the external forces, and Fi,j the
internal or inter-particle forces (see Fig 2). By coupling techniques such as CGMD, SPH and
DEM, these two points of view coincide and we can talk of node-particle duality. Our notional
particles are Lagrangian nodes and, at the same time, Eq (1) is used to update their position at
each time step. Eq (1), therefore, represents the mathematical foundation of the unification
method and the differences among CGMD, SPH and DEM are condensed in the explicit Fi,j
term of Eq (1). The expression of this term in the three models is discussed respectively in the
next three Sections. The Section “Linking the three models” explains how the models are linked
together in our unified framework.

Smoothed Particle Hydrodynamics
The fundamental idea behind the SPH method lies in the mathematical identity

f ðrÞ ¼ ∭f ðr0 Þdðr� r
0 Þdr0

; ð2Þ
where f(r) is a generic function defined over the volume V, the vector r is a three-dimensional
point in V and δ(r) is the three-dimensional delta function. In the SPH formalism, the delta
function is approximated by a functionW called the smoothing kernel with a characteristic
width h (smoothing length) such that

lim
h!0

Wðr; hÞ ¼ dðrÞ; ð3Þ

which brings to the approximation

f ðrÞ � ∭f ðr0 ÞWðr� r
0
; hÞdr0

: ð4Þ
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Eq (4) can be discretised over a series of particles of massm = ρ(r)dr obtaining

f ðrÞ �
X

i

mi

ri

f ðriÞW ðr� ri; hÞ; ð5Þ

where f(ri),mi and ρi are the mass and density of the ith particle, and i ranges over all particles
within the smoothing kernel. Eq 5 represents the discrete approximation of a generic continu-
ous field and can be used to approximate the Navier-Stokes equation at a set of Lagrangian
points, which can be thought as particles characterized by their own mass, velocity, pressure
and density

mi

dvi

dt
¼
X

j

mimj

Pi

r2
i

þ Pj

r2
j

þPi;j

 !
rjWi;j þ

X
FE; ð6Þ

whereWi,j meansW(rj-ri, h),rj denotes the gradient of the kernel with respect of the coordi-
nate rj, P is the pressure, and ∏i,j introduces the viscosity forces. Various expressions for the
tensor ∏i,j are available in the literature. In our calculation, we use both Monaghan’s (Re> 1)
[12] and Morris’ [13] (Re< 1) formulations. By comparing Eq (1) and Eq (6), we can see the
form of the Fi,j term in the case of SPH. At each time step, Eq (6) is used to update the velocities
of the fluid particle, while their density can be calculated either by Eq (5), considering ρ as a
normal scalar field, or, as done in this work, by means of the SPH approximation of the conti-
nuity equation

dri

dt
¼
X

j

mjvi;jrjWi;j; ð7Þ

where vi,j = vi-vj.
In its original version, the SPH method was derived for compressible flows. Incompressible,

and computationally more expensive, versions have been subsequently proposed, but for prob-
lems at low Mach number, the weakly-compressible approach brings only small density varia-
tions and can be safely used. Eq (6) requires an equation of state that relates ρ and P; in this
paper, we use Tait’s equation of state, which has been specifically devised to model water

PðrÞ ¼ c0r0

7

r
r0

� �7

� 1

" #
; ð8Þ

where c0 and ρ0 are, respectively the sound speed and density at zero applied stress. As men-
tioned, this section only gives a brief introduction of SPH for fluids, more information can be
found in [4].

Coarse-Grained molecular dynamics
This section provides a brief introduction of some aspects of MD and CGMD relevant to the
method proposed here, refer to [14] for more details. Molecular dynamics is a form of investi-
gation where the motion and the interaction of a certain number of computational atoms or
molecules are studied. In classical MD simulations atoms move according to the Newtonian
equations of motion

mi

d2ri
dt2

¼ � @

@r
Utotðr1; r2; . . . rNÞ þ

X
FE; ð9Þ

where Utot is the total interatomic potential, whose negative gradient provides the Fi,j forces in
Eq (1). The interatomic potential can be divided into two main parts: non bonded and
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intramolecular. Non bonded forces are usually represented by the so-called Lennard-Jones po-
tential, while the intermolecular forces are often divided in subgroups

Uintermolecular ¼ Ubond þ Uangle þ Udihedral: ð10Þ

Each of these potentials can have different forms. For simplicity, in this study, we only con-
sider harmonic potentials, but more complicated expressions such as FENE, Morse or quartic
can be easily introduced. The harmonic potentials used for the calculations in this work are:

Ubond ¼ kbðr � r0Þ2; ð11Þ

where kb is the Hookean coefficient and r0 the equilibrium distance,

Uangle ¼ kaðy� y0Þ2; ð12Þ

where ka is the angular Hookean coefficient and θ0 the equilibrium angle,

Udihedral ¼ kdð�� �0Þ2; ð13Þ

where kd is the torsional Hookean coefficient and ϕ0 the equilibrium dihedral angle (discussed
below).

Eqs (11), (12) and (13) are the basis for the ball-and-stick representation of molecules that
can be coarse-grained to model macroscopic solids (see Fig 3). It is important to highlight that
here course-graining is brought to its extreme consequences. Normally, the term CGMD is
used to indicate simulations that are coarse-grained, but still at the molecular scale. In this
study, we apply a nominally smilar approach, but to considerably larger lumps of matter. This
entails a number of differences expecially in relation to the notion of temperature. At the mo-
lecular level, in fact, temperature is defined as the second moment of the velocity distribution.
The examples discussed in Section “Examples of applications and discussion” have a physical
scale where this ‘brownian’ component is too small to be percieved as independent motion.
This means that if we are interested in the temperature, we need to introduce heat as a separate
macroscopic variable that obeys its own conservation equation as in Section “Solidification and
melting” and “Lava flows”. In theory, we should, more correctly, have used the expression
Coarse-graining Modelling instead of CGMD, but we prefer the latter because emphatizes the
fact that the potentials are formally similar to those used in MD. Moreover, the fact that
brownian motion has not be included in Eq (1) only depends on the choice of examples consid-
ered in this study. As explained in more detail in the conclusions, our methodology has the po-
tential to cover a large variety of scales including those where CGMDmantains its
molecular origin.

Fig 3A illustrates the molecular foundation of Eqs (11), (12) and (14). Atoms belonging to a
certain molecule are bound together by means of forces, which tend to maintain two atoms at a
certain specific distance r0 (see Eq 11), three atoms at a certain specific angle θ0 (see Eq 12) and
four atoms at a certain specific dihedral angle ϕ0 (see Eq 13). The dihedral, or torsional, angle is
the angle between the two planes generated by atoms 1-2-3 and atoms 2-3-4 in Fig 3A. As al-
ready mentioned this approach can be coarse-grained and employed to model different phe-
nomena occurring in solids like stretching, bending or torsion of particles under the effect of
external forces. The elastic modulus (Fig 3B) is connected to Eq 11 by considering coarse-
grained portions (pseudo-particles) of the solid instead of atoms [15]. The bending modulus
can be achieved by considering Eq 12 acting on a sort of ‘hinge’ as illustrated in Fig 3C. In
order to simulate the effect of shear, the solid can be structured as indicated in Fig 3D and Eq
12 applied to the internal angles. A similar approach can be employed for the Poisson’s Ratio
by arranging two layers of particles as in Fig 3E. The dihedral angle (Eq 13), on the other hand,
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can be used to simulate torsion as indicated in Fig 3F. Breakage and melting can also be includ-
ed by assuming that, for instance, if the distance between two particles exceeds a certain maxi-
mum value rmax or the temperature (intended in macroscopic sense) exceeds a certain value,
the bond is broken and the two particles separated (Fig 3G). Finally, solidification can be mod-
elled by considering the formation of inter-particle bonds according to certain rules (Fig 3H).

Fig 3 illustrates the strategies that can be used to simulate various macroscopic solids with
coarse-grained potentials formally similar to those used in MD. These strategies, moreover,
can be combined together in order to cover the whole array of macroscopic phenomena occur-
ring in solids. We can use, for instance, Eq 11 for simulate the elastic modulus and two sets of
angular potentials (Eq 12), one for the bending modulus (Fig 1C) and another for the shear
modulus (Fig 1D).

Fig 3. Coarse-grain modelling of solids and its molecular origin.

doi:10.1371/journal.pone.0124678.g003
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Discrete Elements Method
The dispersed phase is constituted of “grains”, which are put in motion by the fluid and interact
by colliding with each other. The modelling of the contact forces generated by these collisions
is the basis of DEM. It is helpful to highlight that DEM also represents a type of coarse-grained
method with the difference that CGMD deals with the internal stresses occurring within a sin-
gle grain, while DEM deals with the forces occurring at the contact point of two colliding
grains. If it were possible to run a full MD simulation of two real colliding particles, we could
fully characterize the interlocking of the surface asperities (see Fig 4) at the molecular level.
Since this is not possible, DEM relates the contact forces to the overlap δ of two particles
(Fig 4). As such, this overlap is a numerical artefact due to the time discretization of the equa-
tions of motion, but, despite this, it provides a good estimate of the real particle deformation.
This section provides a brief introduction to DEM, see [16] for more details.

As already mentioned, Eq (1) is valid for SPH, CGMD and DEM with the only difference
that the term Fi,j changes in each case. For DEM, however, the Newton equation of motion
should be integrated also for the rotational degrees of freedom due to the possibility that tan-
gential forces induce torsion or rotation in the grains. In our case, however, each grain is ap-
proximated by several elemental particles, which are bond together and cannot rotate
independently. The resulting torque, therefore, depends exclusively on the forces acting on
each computational particle and an independent equation for the balance of moment is
not necessary.

The Fi,j forces in the case of DEM are contact forces of two types: normal and tangential
forces. The simplest normal contact force model, which takes into account excluded volume
and dissipation, involves a linear repulsive and dissipative force

f n ¼ kndþmeff gnvn; ð14Þ

where kn is a stiffness constant, γn a dumping coefficient, vn the relative velocity in the normal
direction andmeff =mimj/(mi+mj) the effective mass of 2 colliding particles with massmi and

Fig 4. Contact between two DEM particles.

doi:10.1371/journal.pone.0124678.g004
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mj. The results presented in Section 3 are based on Eq (14), but, conceptually, more complicat-
ed models involving nonlinear hysteretic forces, which take into account the possibility that at
the contact point plastic deformation may take place, can be easily introduced.

Tangential forces are coupled to the normal forces trough Coulomb’s law

f t � f sC ¼ msf n; ð15Þ

where for the dynamic case one has dynamic friction with

f t ¼ f dC ¼ mdf n; ð16Þ

where μs is the static and μd the dynamic friction coefficient and, in general, μs<μd. Below the
Coulomb limit (f t � f sC), one has static friction and the tangential force can be calculated with

f t ¼ �ktx�meff gtvt; ð17Þ

where kt, γt and vt are, respectively, the tangential stiffness, dumping coefficient and relative ve-
locity, and ξ is the tangential displacement between two particles for the duration of the con-
tact. Above the Coulomb limit, sliding friction becomes active and Eq (16) is used. In this
study, we consider only simple linear tangential and normal forces. More complex formula-
tions derived from Hertz or Mindlin-Deresiewicz theory can be introduced if necessary. The
same can be said for other complex phenomena such as lubrication forces that can be included
by choosing specific DEM potentials.

Linking the three models
The SPH, CGMD and DEM are based on a common particle paradigm and, therefore, the in-
teractions among the liquid (SPH), the internal structure of the solid (CGMD) and the inter-
face (DEM) is completely regulated by the Fi,j term in Eq (1). All the elemental particles coexist
in the same domain and the linking among the three models can be simply achieved as the sum
of all the forces involved. Fig 5 illustrates this point. In the picture, we have two solid cubes
(real particles) constituted of 49 elemental particles (black circles) dispersed in a SPH fluid
(white circles). There are, therefore, four types of interactions. The first (Type 1, in Fig 5) con-
cerns the liquid-liquid SPH interactions and refers to the viscous and pressure forces in Eq (6).
The second (Type 2) concerns the solid-solid CGMD interactions among elemental particles
belonging to the same cube (Eqs 11–13). The third (Type 3, in Fig 5) concerns the solid-solid
DEM contact interactions among elemental particles belonging to two different cubes (Eqs 14–
17) and activated by inter-particle collision. There is, however, a forth type of interaction that
occurs at the solid-liquid interface and it is not included in any of the previous items. In contin-
uummodelling, this would be implemented by boundary conditions at the interface. In our dis-
crete framework, however, also this type of interaction must be resolved in terms of forces Fi,j.
There are three main types of phenomena occurring at the solid-liquid interface [17, 18]: no-
penetration, no-slip and continuity of stresses. In continuum mechanics, these conditions are
often represented as

@

@t
u� v

� �
� n ¼ 0ðno� penetrationÞ; ð18Þ

@

@t
u� v

� �
� n ¼ 0ðno� slipÞ ð19Þ

Multi-Hybrid System for the Simulation of Solid-Liquid Flows

PLOS ONE | DOI:10.1371/journal.pone.0124678 May 11, 2015 9 / 26



and

ssn ¼ sf ð�nÞðcontinuity of stressesÞ ð20Þ

where n is the normal to the boundary, u the displacement of the solid, v the velocity of the liq-
uid, σs the stresses in the solid and σf in the fluid.

These conditions need to be ‘translated’ in terms of forces Fi,j in order to be introduced in
our discrete framework. Here we use the same approach employed in SPH simulations at solid
boundaries. The no-penetration conditions can be implemented by means of a repulsive Len-
nard-Jones potential between SPH and CGMD particles

f ðrÞ ¼ 4ε
s
r

� �12

� s
r

� �6
� �

; ð21Þ

where r is the distance between the particles, ε the depth of the potential well and σ the distance
at which the inter-particle potential is zero. Eq 21 is truncated at a cut-off distance rc = σ so
that only repulsive forces are considered. In traditional modelling, the no-slip conditions are
simply enforced by imposing zero relative velocity at the solid-liquid boundary. Here this result
is achieved by superimposing fluid ghost particles above the solid particles at the interface [4].
Once both the no-penetration and no-slip boundary condition are enforced, the continuity of
stress is automatically satisfied by Eq (1).

Fig 5. Types of interactions occurring between elemental particles.

doi:10.1371/journal.pone.0124678.g005
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Relation to Other Hybrids and Unification Theories
As discussed in Sections 4 and 5, the capabilities of our SPH-CGMD-DEMmodel go beyond
the sum of its constituting parts. In the past, however, other hybrid models linking together
two of the aforementioned techniques have been investigated. These models have their specific
advantages, and objectives that are different from those of this study. It is important, therefore,
to highlight the difference between our framework and these previous studies. The scope of
this section is not to cover the whole literature in the field of hybrid modelling (this, alone,
would require a book rather than a paper), but to focus only on a few selected methods that
bring some resemblance with the technique proposed here.

Previous SPH-MD hybrids
Hybrid models combining together SPH and Molecular Dynamics (MD) have been proposed
in the past [4], but based on a completely different idea. The domain is divided in two separate
regions, one for MD and the other for SPH. Each part represents a completely different time
and length scale and the interaction between the two models is mediated by a common over-
lapping region that ensures consistency of momentum, energy and mass. In the present meth-
odology, both models coexist in the same domain and at the same time. All the particles are
free to move in the entire domain and to interact directly. As discussed in the conclusions,
when phenomena at different scale are taken into account, this is not reflected in the physical
position of the elemental particles, but rather in their interaction forces.

Previous SPH-DEM hybrids
Hybrids combining SPH and DEM have also been investigated in the past [5, 19]. The DEM
particles, however, were constituted of single elemental particles and, therefore, the effect of
complex shapes and/or particle deformation/breakage was not considered. In principle, it
would be possible to extend this approach to the case of complex shapes and brittle materials.
For complex shapes, for instance, we could couple SPH with DEM clumps or aggregates [20]
and the same idea could be extended to include breakage. The coupled deformation of layers of
brittle and ductile solid materials (without liquid however), for instance, has already been in-
vestigated in this way [21].

The inclusion of a CGMD part in our model, however, allows the model to extend its capa-
bilities in at least two new directions. Firstly, the modelling of the internal solid structure can
be much more sophisticated. A very large variety of MD potentials, in fact, have been devel-
oped over the years and their functional form can be used to simulate bulk properties of a large
variety of solid materials such as metals, polymers, proteins, salts etc. Additionally, the possibil-
ity to introduce bond breaking and bond formation allows the simulation of phenomena such
as solidification and melting, which are beyond DEM capabilities. The second advantage of in-
cluding CGMD is related to its multi-scale nature. As explained in the previous Section dedi-
cated to CGMD, the coarse-graining is here brought to its extreme consequences in order to
extend its use to macroscopic system. This means that, most of the time, we ignore the Brown-
ian forces acting on elemental particles because we do not ‘see’ them at the scale under consid-
eration. If we reduce the scale to the molecular level, however, Brownian motion needs to be
considered. This can be easily introduced in our framework by including (see Fig 2) FE Brown-
ian random forces as, for instance, in Dissipative Particle Dynamics (DPD). The unified dis-
crete framework proposed in this paper, therefore, provides a common basis not only for SPH,
CGMD and DEM, but for any other discrete method with a structure similar to Fig 2, and, for
this reason, we decided to name it the discrete multi-hybrid system (DMHS)

Multi-Hybrid System for the Simulation of Solid-Liquid Flows
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The SPH-SPH unification theory
The SPH method can be used for both solids and liquids. For this reason, a unified framework
entirely based on SPH has been proposed [22]. This idea does not come from traditional phys-
ics disciplines but from the field of computer animation. SPH, in fact, is today also used for
computer animations in movies with special effects and in computer games. Computer scien-
tists have developed, in the last years, many interesting ideas in this field; usually, however,
their goal is not to predict actual phenomena, but to trick the audience into believing that the
physical behaviour they see is plausible. In principle, it is not impossible to reformulate this ap-
proach within a physically more accurate representation of reality, but SPH is not the best
choice for modelling phenomena involving particle collision. Contact and friction forces (Type
3 in Fig 5), in fact, are still an open question in SPH, while they are easily introduced by the in-
clusion of DEM in our multi-hybrid system.

Examples of Applications and Discussion
Various examples are presented and discussed in this section. The goal is to show the flexibility
of the DMHS in a variety of scenarios. For simplicity, all the calculations are in 2D and based
on a relatively small number of particles. The examples in this Section must be considered a
proof of concept about the type of problems that the DMHS can handle rather that a systematic
study. In all the cases considered, however, we check that the results are consistent with the ex-
pected physics of the problem and that all significant phenomena are captured by the model.

Cells, vesicles and capsules under various flow conditions
This case has been extensively investigated in [15] and it is here only mentioned for complete-
ness. The geometry is shown in Fig 6A. Boundary conditions in the x direction are periodic.
This means that when a particle exits the channel from one end, it re-enters from the opposite
end. The liquid is divided in 2048 fluid particles with a massm = 2.5 10–8 kg initially located at

Fig 6. Cells, vesicles and capsules under various flow conditions.

doi:10.1371/journal.pone.0124678.g006
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a distance ΔL = 5 10–6 m. The cell is constituted by a membrane discretized with 48 elemental
particles and the internal cytoplasm (61 elemental particles). The density of the liquid is ρ =
1000 kg m-3, the viscosity μ = 0.1 kg m-1 s-1, the smoothing length h = 1.18 10–5 m, r0 = 3.3 10–6

m (when breakage is considered, this occurs at r0 > rmax = 3.6 10–6 m), kb = 10 J m-2; θ0 = 172.5
rad, ka = 10–18 J, no dihedral potential is considered. The membrane, therefore, has elastic and
bending modulus, but since only one layer of particles is used, Poisson’s ratio, shear and tor-
sional modulus are neglected. The L-J parameters used for the solid-liquid interaction (Eq 21)
are σ = ΔL and ε = 10–12 J. The time step adopted is Δt = 10–7 s and the simulations run for 107

time steps. For simplicity, the properties of the fluid inside the capsule are assumed the same of
the external fluid. Since only one cell is simulated no cell-cell interaction is considered; the
model, therefore, is a SPH–CGMD hybrid instead of a SPH–CGMD–DEM hybrid.

This case is used to test the model for very flexible particles that easily deform with the flow.
Fig 6 gives an overview of the cases investigated. In the case of Fig 6B, 6C and 6I, the flow is
driven by an external volumetric, gravity-like force with acceleration fg = 1 m s-2 in the x direc-
tion. In Fig 6B, an obstacle is placed transversely to the direction of the flow and the (unbreak-
able) cell must deform in order to pass through the narrowing. Fig 6C shows the same
simulation for a breakable cell. Fig 6D considers a restriction on the channel outlet with an ex-
ternal force (fg = 10 m s-2) that pushes the fluid towards the end of the channel. This case repli-
cates a situation typical in biology or medicine when cells or bacteria are captured by an
aspiration device for manipulation. Fig 6E and 6F have been used in [23] to study the deforma-
tion of cells in confined geometries at various Capillary Numbers and to validate the method
by comparing the results with numerical and experimental data in the literature [24]. In Fig 6H
the upper wall is put in motion with a velocity vw = 2�10–3 m s-1. The strong shear flow initially
deforms the soft particle and, subsequently, tears it off releasing is internal content in the flow.
In Fig 6I, finally, a sharp object is added at the end of the channel. The flow pushes the particle
towards the sharp object. Initially, the particle deforms, but above a certain pressure the sharp
object pierces the external membrane releasing its content.

Non-spherical particles in Poiseuille flow
The second set of simulations considers Poiseuille (fg = 0.1 m s-2) flow with dispersed cubic
particles The liquid is water with the same properties as Section 4.1. The geometry is larger (see
Fig 7) and the fluid particles have massm = 5.7�10–3 kg. The smoothing length is h = 5.6�10–3
m, r0 = 2.3�10–3 m, kb = 10 J m-2; θ0 = 90 rad, ka = 10–4 J. This time both normal (Eq 14) and
tangential (Eq 17) DEM forces are considered, kn = 105 J m-2, γn = 0.3 s-1 kt = 103 Jm-2, γt = 0.2
s-1 and μs = 0.5. The time step adopted is Δt = 0.5�10–4 s and the simulations run for 107 time
steps. Three cases are investigated. In Fig 7A, we have particles neutrally buoyant. In Fig 7B,
the particles have a density of 990 kg m-3 and, therefore, they tend to float. In order to highlight
one of the features of SPH, namely the facility in handling free surfaces, the pipe is, in this case,
only partially filled with water. Surface tension is here not considered, but can be easily intro-
duced in the SPH framework [4]. Fig 7C simulates the case of heavy brittle particles with densi-
ty 1500 kg m3. The solid phase tends to deposit to the bottom of the pipe, but, because the
velocity is lower near the walls and higher at the centre, certain particles first are pushed over
the other, and then fall on those below. The cubes above hit with all their weight those under-
neath and, in some cases, break them (breakage is handled as in Section 4.1 with rmax/r0 =
0.001). This explains the type of fractures observed in Fig 7C.

Despite the fact that simulations are 2D, they still capture some typical features observed in
experiments [25] like the formation of temporary clusters of particles that, periodically, are cre-
ated and destroyed in the flow (highlighted in Fig 7A).
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Fig 7. Neutrally buoyant, buoyant and heavy cubic particles in Poiseuille flow.

doi:10.1371/journal.pone.0124678.g007
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Solidification and melting
The approach proposed is not limited to moment transfer. In the SPH framework, for instance,
we can write the internal energy balance [26] as

mi

dei
dt

¼ �
X

j

mimj

rirj

ðki þ kjÞðTi � TjÞ
r2i;j

ri;j � rjWi;j: ð22Þ

A certain number of new properties such as ei (internal energy), Ti (temperature) and κi
(thermal conductivity) are associated to each particle i and evolved according to Eq 22. The
most general form of Eq 22 would include also the dissipation terms coming from the momen-
tum balance, but these are here neglected. Analogously to Eq (6), an equation of state is re-
quired to close Eq (22). Here, we use

ei � e0 ¼ cv ðTi � T0Þ; ð23Þ

where cv is the heat capacity, and e0 and T0 respectively the reference internal energy and tem-
perature (here both equal to 0). In the case of solidification and melting, however, latent heat
(see Fig 8) is involved and this must be considered in the equation of state. Eq (23) therefore
must be modified accordingly (considering both e0 and T0 equal to 0)

Ti ¼
ei
cvS

for ei < esol

Ti ¼ T� for esol < ei < eliq

Ti ¼
ei � eliq:
cvL

þ T� for ei > eliq

ð24Þ

8>>>>>><
>>>>>>:

where cvs is the heat capacity of the solid, cvL the heat capacity of liquid, T
�
the transition tem-

perature, eliq the internal energy of the liquid at T
�
and esol the internal energy of the liquid at

T
�
.
In Fig 9, we consider a liquid with ρ = 1000 kg m-3 and thermal conductivity κ = 1 J s-1 m-1

K-1 that solidifies at T = 25°C. The mass of each liquid particle ism = 6.2�10–1 kg, its smoothing
length is h = 4�10–2 m, esol = 50 J kg-1, eliq = 100 J kg-1, cvs = 2 J kg-1 K-1 and cvL = 1 J kg-1 K-1.
The time step adopted is Δt = 10–3 s and the simulations run for 105 time steps. Initially the liq-
uid is at T = 100°C, while the walls are at T = 0°C (κWALLS = 100 J s-1 m-1 K-1). The liquid is
poured into the mould and exchange heat with the walls as illustrated in Fig 9. Solidification is
handled in the following way: when an elemental particle reaches an internal energy lower than
esol = 50 J kg-1, it is labelled as ‘solid’; at this point, the algorithm searches for neighbour solid
particles and, if it finds any, it creates a new bond between them. Two particles are considered
neighbour if they are located within a cut-off distance ΔL = 2.5 10–2 m. The bonds are here as-
sumed harmonic (Eq 11) with r0 = 2.5 10–2 m and kb = 105 J m-2. Once the particle solidifies, it
cannot actively create new bonds, but it can be included in bonds formed by other solidifying
particles. If the temperature of a solid particle rises above eliq = 100 J kg-1, it melts again, it is la-
belled as ‘liquid’, and all its bonds are destroyed. During solidification, the particle is consid-
ered a SPH particle until complete solidification (e< esol) occurs and a DEM particle
afterwards. During melting, the particle is considered a DEM particle until complete melting
(e> eliq) occurs and a SPH particle afterwards. A gradual change of the rheological properties
of the material during solidification/melting is also possible as done later on for lava flows.

Heat exchange with air is also considered. We cannot use Eq (22) for this because air parti-
cles are not directly included in the simulations. Particles located at the surface of the liquid,
therefore, exchange heat with a virtual isothermal medium according to Newton’s law of
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cooling

dT
dt

¼ �kTðT � TairÞ: ð25Þ

with kT = 0.02 s-1 and Tair = 0°C. A particle is located at the liquid surface if its coordination
number, calculated using h as cut-off, is lower than 5.5. Fig 9A, 9B and 9C show the fluid enter-
ing the mould and then gradually solidifying. Fig 9D shows the same situation of Fig 9C, but it
highlights the formation of three zones. The blue zone indicates the liquid at e> eliq and T>

T�, the green zone indicates the transition at eliq < e< eliq and T = T� and the red zone indi-
cates the solid at e< eliq and T< T�.

In Fig 9, the heat exchange with the surface is lower than that with the walls. In a second
simulation (Fig 10), kT is increased to 0.5 s

-1. This creates an exceptionally high heat loss from
the liquid surface. This is certainly a very extreme situation, but, at the same time, a good test

Fig 8. Internal energy versus temperature (assuming e0 = 0 and T0 = 0) in the case of phase transition.

doi:10.1371/journal.pone.0124678.g008
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Fig 9. Casting with slow solidification. Particles coloured according to their temperature in (a), (b) and (c), according to their state in (c).

doi:10.1371/journal.pone.0124678.g009
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for checking the reliability of our model. In this case (Fig 10), the liquid starts to solidify and a
solid crust forms on the casting even before it touches the mould. In order to enhance this ef-
fect, the latent heat has been neglected (esol = eliq). When it reaches the bottom, we observe two
phenomena. The first is the mechanical breaking of the particles constituting the crust (break-
age is handled as in Section 4.1 with rmax = 4�10–2 m). The second is the partial re-melting of
the crust once it is put into contact with the hot bulk flow. Both solid fragments and liquid
drops are then projected into the air. The drops rapidly cool due to heat transfer with air. Col-
liding solid particles interact via DEM forces with kn = 104 J m-2, γn = 0.3 s-1 kt = 103 J m-2, γt =
0.2 s-1 and μs = 0.5. When all the liquid is solidified (see last Fig 10), the resulting solid is very
porous and it is constituted of fragments (highlighted in Fig 10), which are small agglomerates
with no links with the rest of the structure. The majority of these are at the surface because they
landed on the block after it has already solidified, but some of them can also be found embed-
ded in the bulk. The rest of the structure is a unique block, but formed from half-solidified frag-
ments and, for this reason, it has a very porous structure. As mentioned, the case of ultrafast
solidification is extreme and it has been introduced mainly for testing purposes. Despite this,
the model captures the correct phenomenology of real applications where such a rapid cooling
actually occurs [27].

Fig 10. Casting with fast Solidification (particles coloured according to their state: red = solid, blue = liquid).

doi:10.1371/journal.pone.0124678.g010
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Cleaning processes
In this example, the removal of protein-based soils deposits on hard surfaces is simulated. This
is a typical cleaning problem and its phenomenology is known in detail [28]. Initially the pro-
tein swells due to water absorption. Then, when the moisture content reaches a certain level,
the soil structure is weakened and the removal of the substance occurs. In order to simulate
this process, a new property, water concentration ci, is introduced in the SPH part of the
model. Each elemental particle, therefore, besides its position and velocity, also carries an ele-
mental concentration. Analogously to Eq 22, the diffusive mass balance of water can be written
in the following way

dwi

dt
¼ �

X
j

mimj

rirj

ðDi þ DjÞðci � cjÞ
r2i;j

ri;j � rjWi;j; ð26Þ

where wi is the mass of water in the particle and Di (diffusion coefficient) are associated to each
particle i and evolved according to Eq 26. As happened with Eq (6) and Eq (22), also for Eq
(26) we need a closure term, which, in this case, is simply

wi ¼ ci
mi

ri

: ð27Þ

In theory, the water particles that exchange mass with the protein should reduce their mass.
This phenomenon, however, has been neglected here because of the excess of water in the sys-
tem. In Fig 11, we consider a liquid with ρ = 1000 kg m3, the mass of each liquid particle is
m = 2.3�10–6 kg and its smoothing length h = 1.1�10–4 m. A velocity gradient is imposed to the
water by moving the upper wall with vW = 2�10-4m s-1. Van der Walls adhesion forces between
soil particles are modelled with a Lennard-Jones potential with σ = 5�10–5 m and ε = 7�10–11 J.
Adhesion between soil particles and the surface is modelled in the same way but with ε = 5�10–
10 J. The surface-soil interaction force, therefore, is stronger than the soil-soil one. The time
step adopted is Δt = 10–6 s and the simulations run for 5�107 time steps. The soil particles ini-
tially have density ρ = 1800 kg m3 and diameter of 4.7�10–5 m. During the simulation they ad-
sorb water according to Eq (26) (D = 10–9 m s-2), swell and their volume increases
proportionally to the water absorbed. Due to the presence of water, the adhesion forces among
soil particles decrease linearly with the concentration of water. When the concentration reaches
0.5, there is no adhesion left and the particles are washed away by the flow. The results shown
in Fig 11 are perfectly consistent with the known physics of the problem [28].

Lava flow on inclined plane
In this section, we consider a liquid with ρ = 2000 kg m3, heat capacity cv = 1 J kg-1 K-1, viscosi-
ty 1.0 kg m-1 s-1 and thermal conductivity κ = 1 J s-1 m-1 K- that flows on an 30° inclined plane.
The mass of each liquid particle ism = 1.25 kg and smoothing length h = 4�10-2m. Initially the
liquid is at T = 1000°C and solidification occurs at T = 500°C. The walls are excluded by the
mass transfer therefore cooling happens only because of Eq (25) where kT = 0.02 s-1 and Tair =
0°C. The time step adopted is Δt = 10–4 s and the simulations run for 107 time steps. Solidifica-
tion re-melting and solid breakage are handled similarly to Section 4.4. Once the particle are
solid they interact via DEM forces with kn = 106 J m-2, γn = 0.3 s-1 kt = 104 Jm-2 and γt = 0.1 s-1.
Latent heat is not considered in this case, because often lava solidification involves glass transi-
tion [29], which does not produce latent heat. In theory, the heat capacity coefficient should be
function of the temperature, but this has been here neglected. Fig 12 shows three snapshots of
the simulation. Cooling and solidification begin at the liquid surface and an external solid crust
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forms. The bulk, however, is still fluid and its motion generates tensions in the crust. Because
of this, the crust breaks and cracks appear. This behaviour is consistent with observation of
lava flow [30].

We use this example also for illustrating a possible way to approach complex rheology in
our framework. Let’s suppose that the liquid per se is Newtonian, but it contains a large quanti-
ty of solid particles that confer to the flow a Bingham-like behaviour. These solid particles are
created during solidification: some of them become large enough to be represented by compu-
tational particles, others never reach this minimal size (see Fig 13A). We call these small parti-
cles “sub-scale solids”. The smallest portion of matter that the model can handle as an
independent solid is of the size of elemental particles. Smaller sub-scale solids, however, can
contribute considerably to the rheology of the flow. In order to embed the effect of these sub-
scale solids in the liquid, we employ hybrid particles with an intermediate behaviour between
SPH and DEM (see Fig 13B). At 1000°C, the particle is completely liquid and we only consider
SPH forces. At 500°C, the particle is completely solidified and we only consider DEM forces. In
between, we assume an intermediate behaviour where SPH and DEM forces are
mixed together.

This method can prove very useful for the simulation of complex fluids where the complexi-
ty of the rheology depends on dispersed particles with a wide size distribution: the larger parti-
cles are handled directly as real solids, while sub scale solids with the mixing procedure
described above.

Particle separation
There are different techniques for particle separation based on particles’ differences in size,
weight or shape. In this section, we use the DMHS to simulate a “Plinko-chip” (Fig 14A) that
can separate particles, whose only difference consists in their rigidity. We consider here two
types of particles: one is more flexible than the other, but, except for this, all the remaining
properties are exactly the same. This application refers to a possible cell separator that can sort

Fig 11. Swelling and erosion of a protein-based soil deposit (particles coloured according to their water content).

doi:10.1371/journal.pone.0124678.g011
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Fig 12. Lava flow on an inclined plane (particles coloured according to their temperature).

doi:10.1371/journal.pone.0124678.g012
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cancer cells from healthy cells, which only differs for their rheological properties. We consider
cells with radius of 10 μmmoving in aqueous environment. The length of the chip is y0 = 1.5
mm, the width x0 = 0.45 mm and the distance between two adjacent pins 30 μm. The cells start
at the top of the Plinko-chip and move towards the bottom due to a gravity-like force. The ex-
ternal water is stagnant and, therefore, no SPH component is considered in this model, which,
therefore, is a DEM–CGMD hybrid instead of a SPH–CGMD–DEM hybrid. Water resistance
is considered as Stokes’ drag acting on each particle

Fdrag
i ¼ �6pmri; ð28Þ

where ri is the radius of particle i. Only the external membrane of the cell is considered and as-
sembled with 16 computational particles with density ρ = 1000 kg m-3. Adjacent particles be-
longing to the same cell are bonded together with a harmonic bond with r0 = 3.9�10–6 m and kb
= 10–2 J m-2, and an angle bond with θ0 = 157.5 rad and ka = 10–15 J for the rigid cells and ka =
10–16 J for the flexible cells. The value of ka is the only difference between the two types of cell
and confers a different flexibility to each group. DEM forces between a cell and (i) other cells,
(ii) the pins of the Plinko-chip and (iii) the walls of the chip are considered with kn = 10 J m-2,
γn = 0.3 s-1 kt = 10 J m-2, γt = 0.3 s-1 and μs = 0.5. The time step employed is Δt = 10–7 s. Fig 14
shows an example of simulation: the red cells are the flexible ones, the blue the rigid. Because of
the small size of the cells and the presence of water resistance, the body force required to move

Fig 13. Mixing SPH and DEM forces to account for sub-scale solids.

doi:10.1371/journal.pone.0124678.g013
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the cells in the chip must be higher than gravity (here f = 100 m s-2). In practice, this can be
achieved by introducing in the cells specifically designed magnetic nanoparticles [31] and em-
ploying magnetic forces. While they move along the channel, cells are separated because the
flexible ones can more easily pass in the narrow gaps through the pins. Fig 14B shows the cen-
tre of mass yC of the flexible and rigid cells at each time step. At the beginning all the cells are
randomly allocated in the upper region and yC is approximately the same for both types. The
flexible cells, however, descend faster along the channel and, therefore, their centre of mass de-
creases faster than that of the rigid cells. At the end of the simulation, when all the cells are col-
lected at the bottom of the chip, they mix again, but there is a period of time, where a certain
degree of separation is achieved as indicated in Fig 14B.

Fig 14. Plinko-chip for cell separation (a); evolution of the center of mass for flexible and rigid cells (b).

doi:10.1371/journal.pone.0124678.g014
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Conclusions
In this article, a methodology based on CGMD, SPH and DEM is presented and discussed.
This approach links together multiple discrete models in a hybrid fashion and, for this reason,
has been named the discrete multi-hybrid system. The main goal of this paper is to show how
this approach can be used to simulate a large variety of solid-liquid dispersed flows. Here we
have focused on specific applications involving deformable, breakable, melting/solidifying and
swelling particles, but other examples such as filtration or erosion could have been easily
added. The model has been tested in various different situations and sometimes under very ex-
treme conditions and, in all cases, the simulations correctly reproduced the expected physics of
the system. It is also important to highlight the variety of scales, from microns to meters, cov-
ered by the examples.

In the case of casting and cleaning, moreover, the use of SPH for mass and heat transfer im-
plies a multi-scale approach, where the motion of solidified drops and soil particles is accom-
plished particle by particle, while heat and mass transfer are handled almost in a continuum
fashion. This approach is conceptually similar to certain atomistic-continuum methodologies
[32] with the difference that here scale separation is achieved within a discrete framework and
by adopting different types of Fi,j forces rather than by physically separating the discrete and
the continuum domains. This, of course, poses a limit at the scale separation manageable by
the model especially in terms of time-scale. As a consequence, we don’t expect this technique,
to cover phenomena characterized by extremely large scale separations as in continuum-
atomistic methods.

The lava flow example introduces yet another multi-scale solution. In order to take into ac-
count the progressive formation of sub-scale solids in the solidifying liquid, the properties of
the elemental particles have been gradually transformed from SPH to DEM. This approach can
be employed to simulate complex fluids where the rheological properties depend on dispersed
solids of different size. The larger solid grains can be simulated directly, while the effect of the
smaller sub-scale solids can be included collectively by introducing a DEM component in the
SPH-particles.

The examples considered in the paper have been limited to scales where Brownian motion
is not directly observable. This restriction, however, can be removed and the effect of fluctuat-
ing hydrodynamics can be easily included in the model by, for instance, substituting SPH with
Smoothed Dissipative Particle Dynamics. Finally, the possibility to employ computational par-
ticles with variable sizes, as feasible in the SPH method [4], has the potential of further enhance
the multi-scale capabilities of our multi-hybrid system.
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