12 research outputs found

    Timing methodologies and studies at the FERMI free-electron laser.

    Get PDF
    Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented

    Single-layer graphene modulates neuronal communication and augments membrane ion currents

    Get PDF
    The use of graphenebased materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that singlelayer graphene increases neuronal firing by altering membraneassociated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene\u2013ion interactions that are maximized when singlelayer graphene is deposited on electrically insulating substrates are crucial to these effects

    Grafene single-layer per biologia e chimica: fabbricazione e applicazioni

    No full text
    The huge graphene boom of the last decade led to its use in a very large number of application in different fields. In this thesis I explore single layer graphene properties to develop two main applications in chemistry and biology. First, the attention will be focused on graphene cleanness. A novel graphene transfer method, using graphene on copper grown via chemical vapour deposition, is developed. This involves the use of a thin titanium layer as graphene support during its transfer from the metal on the final substrate instead the common used polymer, avoiding residuals and contaminations. Secondly, single layer graphene was used to fabricate sealed cell for liquid investigation. Graphene nanobubbles filled with water were fabricated on a TiO2 substrate and used for liquid analysis with different techniques, such as electron microscopy, Raman spectroscopy, and, more interesting, x-ray electron spectroscopy in ultra-high vacuum conditions. These sealed graphene liquid cells were used to follow two chemical reactions, the thermal-induced iron reduction in a FeCl3 solution and the photon-induced iron reduction in liquid Prussian Blue. In the last part, a biological application will be presented; this involve the use of supported and suspended single layer graphene for rat hippocampal neuronal cells growth, demonstrating the big potential of this material for neuronal interfaces

    Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments

    No full text
    Renewable technologies, and in particular the electric vehicle revolution, have generated tremendous pressure for the improvement of lithium ion battery performance. To meet the increasingly high market demand, challenges include improving the energy density, extending cycle life and enhancing safety. In order to address these issues, a deep understanding of both the physical and chemical changes of battery materials under working conditions is crucial for linking degradation processes to their origins in material properties and their electrochemical signatures. In situ and operando synchrotron-based X-ray techniques provide powerful tools for battery materials research, allowing a deep understanding of structural evolution, redox processes and transport properties during cycling. In this review, in situ synchrotron-based X-ray diffraction methods are discussed in detail with an emphasis on recent advancements in improving the spatial and temporal resolution. The experimental approaches reviewed here include cell designs and materials, as well as beamline experimental setup details. Finally, future challenges and opportunities for battery technologies are discussed

    Contamination-free suspended graphene structures by a Ti-based transfer method

    No full text
    Minimization of contamination associated with the graphene transfer process from the growth substrate to the device surface is a major requirement for large scale CVD graphene device applications. The most widespread transfer methods are based on the use of a thin sacrificial polymeric layer such as poly(-methyl methacrylate), but its complete removal after transfer is an unsolved problem; this issue is critical for suspended graphene, since the back surface often results contaminated by the dissolved polymer. Here we present a polymer-free method of commercial CVD-grown graphene transfer from the initial copper substrate to the silicon device, in which a 15 nm-thick titanium layer replaces completely the polymer film as supporting layer during the transfer process. Our approach reduces significantly the level of contaminations for supported and suspended graphene layers. Raman spectroscopy was used to prove the quality of the transferred graphene, not affected by this approach. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy were used to assess the amount of the contaminants left by the transfer process. Overall carbon contamination was reduced by a factor 2, while contaminations originating from the metal etching in hydrofluoric acid, namely titanium and fluorine, were absent within the sensitivity of the used techniques

    Graphene liquid cells for multi-technique analysis of biological cells in water environment

    No full text
    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM

    Silicon Carbide membranes as substrate for Synchrotron measurements

    No full text
    Silicon Nitride (SiN) membranes have long been the substrate of choice for many different synchrotron techniques at very different wavelengths (from IR to hard X-rays), due to their ease of production, relative robustness even in films <200 nm in thickness, and compatibility with standard microfabrication techniques. Here we present a set of data referring to custom-made Silicon Carbide (SiC) windows. We measured SiC surface roughness, mechanical robustness and membrane transmission both at IR and soft X-rays wavelengths, and compared the data with standard Si3N4, acquired in the same conditions. Further, we grew HEK293T cells both on Si3N4 and SiC membranes, and analysed them with IR and soft X-ray microscopy. Our data demonstrates how SiC is an excellent choice as membrane material for synchrotron measurements, since it shows higher transmission and higher robustness as compared to Si3N4 of the same thickness, and an improved compatibility for cell culturing, allowing to postulate their use also for bio-oriented research

    A novel approach in the free-electron laser diagnosis based on a pixelated phosphor detector

    No full text
    A new high-performance method for the free-electron laser (FEL) focused beam diagnosis has been successfully tested at the FERMI FEL in Trieste, Italy. The novel pixelated phosphor detector (PPD) consists of micrometric pixels produced by classical UV lithography and dry etching technique, fabricated on a silicon substrate, arranged in a hexagonal geometry and filled with suitable phosphors. It has been demonstrated that the overall resolution of the system has increased by reducing the diffusion of the light in the phosphors. Various types of PPD have been produced and tested, demonstrating a high resolution in the beam profile and the ability to measure the actual spot size shot-to-shot with an unprecedented resolution. For these reasons, the proposed detector could become a reference technique in the FEL diagnosis fiel

    Toward an integrated device for spatiotemporal superposition of free-electron lasers and laser pulses

    Get PDF
    Free-electron lasers (FELs) currently represent a step forward on time-resolved investigations on any phase of matter through pump-probe methods involving FELs and laser beams. That class of experiments requires an accurate spatial and temporal superposition of pump and probe beams on the sample, which at present is still a critical procedure. More efficient approaches are demanded to quickly achieve the superposition and synchronization of the beams. Here, we present what we believe is a novel technique based on an integrated device allowing the simultaneous characterization and the fast spatial and temporal overlapping of the beams, reducing the alignment procedure from hours to minutes
    corecore