2,461 research outputs found

    Cancer pain as "a disease into disease". A national research on women with breast cancer

    Get PDF
    L’ipotesi di fondo su cui si basa l’intero lavoro è che il dolore oncologico debba essere riconosciuto come “malattia nella malattia”: non si può considerare tale dolore mero “sintomo” del cancro ma esperienza totale che coinvolge l’intera persona. Il dolore oncologico è carico di valenze e significati personali, è associato a rappresentazioni sociali e, come ogni malattia, è disease, illness e sickness. Partendo da questo presupposto, la dissertazione si è posta come obiettivo generale quello di studiare il dolore oncologico tra le donne con tumore al seno, le sue componenti sociali, psicologiche, individuali oltre che fisiche; si è voluto inoltre studiare la specificità del vissuto e dei significati associati all’esperienza dolorosa. Il lavoro è articolato in due parti fondamentali, una teorica ed una empirica. La prima presenta un inquadramento dei principali concetti della sociologia della salute riguardanti il dolore. Per quanto riguarda la parte empirica, si è fatto ricorso ad una ricerca mista, fatta di metodi misti e fondata su un approccio metodologico di natura integrativa che si avvale di tecniche quantitative e qualitative. La parte quantitativa si basa su una parte dei dati della ricerca nazionale ESOPO - Epidemiological Study of Pain in Oncology. Dall’intero campione sono state isolate le sole donne con tumore al seno (n=846). Si è proceduto quindi allo studio di tale campione, alle elaborazioni statistiche con il programma SPSS e all’interpretazione dei risultati. Per quanto riguarda la parte qualitativa, invece, è stata condotta un’analisi delle fonti che si è avvalsa di un approccio netnografico: è stata condotta un’osservazione non intrusiva di 12 blog scritti da donne con tumore al seno, con lo scopo di indagare le narrazioni di malattia, i vissuti personali, i significati di dolore e malattia e le loro ripercussioni sulla vita quotidiana.Cancer pain is an invasive and debilitating experience not only in bio-organic level, but also psychological and social. The main objective of this work is to explore oncological pain between women with breast cancer considering it as disease, illness and sickness. It investigates diffusion, representations, perceptions, meanings and experiences of pain and its treatments. The thesis is divided into two main parts , one theoretical and one empirical. The first presents a classification of the main concepts and theories of the sociology of health related to the concept of pain. The second part analyses oncological pain with an approach of mixed research based on an integration of quantitative and qualitative techniques. The quantitative part is based on a segment of the data of the National Research Esopo - Epidemiological Study of Pain in Oncology. Starting from the entire sample were isolated only women with breast cancer (n =846) . This sample was subjected to the statistical analysis with the SPSS program and the interpretation of results. The qualitative part is based on a netnography approach: it was conducted non-intrusive observation of 12 blogs written by women with breast cancer , with the aim to investigate narratives of illness, personal experiences , the meanings of pain and disease and their impact on daily life. The work concludes with some final remarks do not want to be definitive but suggestions for further reading, reflections and actions spendable. The work concludes with some final remarks that do not want to be definitive but suggestions for further reading, reflections and practice actions

    Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions

    Get PDF
    Lipidomics and metabolomics are nowadays widely used to provide promising insights into the pathophysiology of cellular stress disorders. Our study expands, with the use of a hyphenated ion mobility mass spectrometric platform, the understanding of the cellular processes and stress due to microgravity. By lipid profiling of human erythrocytes, we annotated complex lipids such as oxidized phosphocholines, phosphocholines bearing arachidonic in their moiety, as well as sphingomyelins and hexosyl ceramides associated with microgravity conditions. Overall, our findings give an insight into the molecular alterations and identify erythrocyte lipidomics signatures associated with microgravity conditions. If the present results are confirmed in future studies, they may help to develop suitable treatments for astronauts after return to Earth

    Two motors and one spring: hypothetic roles of non-muscle Myosin II and submembrane actin-based Cytoskeleton in cell volume sensing

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.info:eu-repo/semantics/publishedVersio

    Endothelial cell plasma membrane biomechanics mediates effects of pro-inflammatory factors on endothelial mechanosensors: vicious circle formation in atherogenic inflammation

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.This research was funded by grant from “Fondo di Ateneo per la ricerca 2020”, University of Sassari, Italy.info:eu-repo/semantics/publishedVersio

    Pleiotropic and potentially beneficial effects of reactive oxygen species on the intracellular signaling pathways in endothelial cells

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.info:eu-repo/semantics/publishedVersio

    Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells

    Get PDF
    Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier

    Intake of palmitic acid and its association with metabolic flexibility in middle-aged individuals: a preliminary study

    Get PDF
    Objective: This study aimed to assess the relationship between dietary palmitic acid (PA) intake and its association with body fat deposition and metabolic flexibility (MF) in middle-aged healthy individuals. Methods: Fifteen healthy participants (n = 15; 6 males, 9 females) with a mean age of 54 were enlisted. They were subjected to graded exercise tests using a cycle ergometer coupled with a calorimeter. Respiratory gas exchange was evaluated to determine two MF parameters. First, the MF index was derived by multiplying peak fatty acid oxidation (PFO) per kg of fat-free mass (FFM) with the percentage of VO2max at PFO. The second parameter, peak energy substrates’ oxidation (aka PESO), was computed by aggregating the kilocalories from PFO and peak carbohydrate oxidation, normalized per kg FFM. Dietary intake was gauged using a 7-day dietary record. Spearman’s regression was employed to analyze the association between dietary intake of specific fat classes, PA, MF parameters, and body fat percentage. Results: Preliminary results demonstrate that dietary saturated fatty acids (SFA) within physiological limits correlate with enhanced substrate oxidation capacity. This suggests augmented MF in middle-aged subjects. Among dietary SFA, PA was identified as the primary factor in this favorable correlation. Conclusions: Our initial observations, even though preliminary, strongly suggest a beneficial association between PA intake, MF, and body fat percentage. This underscores the potential nutritional importance of PA in promoting MF

    Cultivation of Cyanobacteria and Microalgae using Simulated in-situ Available Resources for the Production of useful Bio-compounds on Mars: Modelling of Experiments

    Get PDF
    To increase the likelihood of successful long-term manned missions to Mars, it is necessary to explore the potential for utilizing in-situ resources to cultivate microalgae for food and supplement production. This study examines the feasibility of growing Spirulina platensis in a medium consisting of high volume percentages of Martian Medium, which is produced using resources available on Mars, such as regolith, atmospheric CO2, and astronauts' urine. An experimental activity is performed to simulate the microalgae growth process on Mars, demonstrating good productivity. A mathematical model is developed to describe biomass growth dynamics as a function of pH, light intensity, microgravity, and nutrient concentration. The model is validated and then utilized to identify optimal operating conditions for maximizing biomass productivity on Mars and meeting finding the nutritional and supplement needs of a six-member crew

    Development of p-Tau Differentiated Cell Model of Alzheimer’s Disease to Screen Novel Acetylcholinesterase Inhibitors

    Get PDF
    Alzheimer’s disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation
    • …
    corecore