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Abstract: Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive
oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive
production of ROS, however, results in oxidative stress, a significant contributor to the development
of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning
positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of
the available experimental data suggests possible positive roles of ROS in induction of pro-survival
pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and
prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS
can contribute to the stabilization of the endothelial barrier.

Keywords: reactive oxygen species; endothelial cell; insulin resistance; endothelial paracellular
permeability; endothelial dysfunction

1. Introduction

Cells of vasculature, red blood cells (RBCs), endothelial cells (ECs), and vascular
smooth muscle cells (VSMCs), work in concert to match the oxygen supply with tissue
oxygen demand [1]. Some oxygen molecules encounter free electrons (e−) and free protons
(H+), resulting in the formation of reactive oxygen species (ROS). ROS include superoxide
anion (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH). The reaction of
superoxide anion with nitric oxide (NO) produces peroxynitrite (ONOO−). There are
multiple sources of ROS in ECs, including nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases, xanthine oxidases, nitric oxide synthase (NOS), cyclooxygenase (COX),
cytochrome P450 monooxygenases, and mitochondria [2,3]. There are seven members of
the NADPH oxidase (Nox) family—Nox1, Nox2 [also known as gp91phox (phox stands
for phagocyte oxidase)], Nox3, Nox4, Nox5, Duox1 (dual oxidase), and Duox2 [4]. Nox1,
Nox2, Nox4, and Nox5 isoforms are expressed in cells of the cardiovascular system [3,5–7].
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ROS are important signaling molecules that can influence various signaling proteins
and contribute to cell survival [8,9]. Protein tyrosine phosphatases are reversibly inhibited
by ROS [10–12]. Many protein kinases can be regulated by ROS, including Src family
tyrosine kinases, receptor tyrosine kinases, c-Abl tyrosine kinase, Akt, cAMP-dependent
protein kinase (PKA), mitogen-activated protein kinases (MAPKs), Ca2+/calmodulin-
dependent protein kinase II (CaMKII), cGMP-dependent protein kinase Iα (PKGIα), ataxia-
telangiectasia mutated (ATM) protein kinase, and apoptosis signal-regulated kinase 1
(ASK1) [13,14].

Excessive ROS production is one of the major causes of hypertension [15], atheroscle-
rosis [16], and other cardiovascular diseases [17], i.e., pathological states that depend on
endothelial dysfunction. Endothelial dysfunction itself can result from oxidative stress [18].
However, accumulating data suggest that ROS at the physiological level perform pro-
survival roles in ECs [5–7,19–22]. This diversity and multiplicity of signaling proteins that
can be directly regulated by ROS, prompted us to further analyze if, and how, ROS may
prevent or improve some pathological conditions of the endothelium, such as insulin resis-
tance, disruption of the endothelial barrier, and endothelial dysfunction. A hypothesis on
the integration of the signaling pathways by microtubules [23] may help in understanding
the control of signaling networks by ROS.

In this review, we analyze the available experimental data on activation of pro-survival
signaling pathways in ECs by ROS. Since the hydroxyl radical produced from H2O2 can
directly activate inhibitory α subunits (Gαi/o) of heterotrimeric G proteins [24,25], we
first consider if ROS can mimic downstream signaling of Gi-protein-coupled receptors
(Gi-PCRs) (Section 2) and insulin signaling (Section 3). Next, we arrange the roles of ROS in
accordance with their hypothetically protective roles in pathological states of endothelium,
such as endothelial barrier disruption (Section 4), endothelial dysfunction (Section 5), and
angiogenesis (Section 6).

2. ROS, Gαi/o Subunits of the Heterotrimeric G Proteins and EC Survival

There are four families of the α subunits of the heterotrimeric G proteins—Gαs,
Gαi/o, Gαq/11, and Gα12/13 [26]. In neonatal rat, the Gαi/o subunits of cardiomyocytes
were shown to be directly activated by hydroxyl radicals produced from H2O2, in the
presence of Fe2+ [24,25]. Among the seven cysteine residues present in Gαi2 (Cys66,
Cys112, Cys140, Cys255, Cys287, Cys326, and Cys352), Cys287 and Cys326 are responsible
for Gαi2 activation by hydroxyl radicals [25].

Apoptosis induced by high glucose in human pancreatic islet microvascular ECs can
be inhibited by activation of the phosphatidylinositol 3-kinase (PI3K)–Akt, extracellular
signal-regulated kinase (ERK) 1/2, and adenylyl cyclase (AC)–cAMP–PKA pathways [27].
Here, we regard the potential role of Gi proteins in these three pro-survival pathways in
ECs: AC–cAMP–PKA–cAMP response element-binding protein (CREB), Ras–Raf–mitogen-
activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2)–ERK1/2, and
PI3K–Akt (Figure 1).

As discussed below, there is experimental evidence for activation of these pro-survival
pathways by Gi-protein-coupled receptors (Gi-PCRs) via liberation and activation of the
Gβγ dimers (Figure 1). Activation of Gαi/o by ROS would also activate Gβγ [24,25]. This
makes us suggest that ROS via activation of Gi proteins can promote a Gi-PCR-independent
EC survival. Data on triggering of EC survival by some Gi-PCRs are presented in Table 1.
However, activation of Gi-PCRs above a specific threshold may also induce apoptosis
(Table 1).
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Figure 1. Scheme illustrating the potential mechanisms for activation of the pro-survival path-
ways by ROS-induced activation of Gi proteins—both Gαi and Gβγ subunits—in a Gi-PCR-
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Table 1. Involvement of Gi proteins, activated by ligand binding to GPCRs, in regulation of EC survival, and apoptosis.

Agonist Receptor(s)
Coupling of

Receptor to Gi
Proteins

Effect on EC Survival and Apoptosis

Pro-Survival or
Pro-Apoptotic, EC Type Signaling Pathway Reference(s)

Adenosine A1AR [28] Pro-survival, HUVEC PI3K—Akt [29]

Anandamide CB1, CB2 [30] Pro-apoptotic,
HUVEC

Activation of JNK
and p38 but not ERK [31]

Anandamide CB1 [30] Pro-apoptotic, HCAEC JNK and p38 [32]

Ghrelin gene products GHS-R1a Gq/11, Gi [33]
Pro-survival,
human pancreatic islet
microvascular ECs

AC–cAMP–PKA [27]

S1P S1P1 Gi [34] Pro-survival, HUVEC ERK1/2 [35]

HUVECs, human umbilical vein endothelial cells; HCAEC, human coronary artery ECs.

2.1. Gi/o Proteins and AC–cAMP–PKA Pathway

AC activation via production of cAMP and activation of PKA leads to phosphory-
lation and nuclear translocation of CREB [36]. CREB can mediate the pro-survival effect
of the AC–cAMP–PKA pathway. For example, in mouse, the immortalized cerebral en-
dothelial (b.End3) cells CREB is responsible for vascular endothelial growth factor A
(VEGF-A)/VEGF receptor-2 (VEGFR-2)-mediated cell survival [37]. In human umbilical
vein, endothelial cells (HUVECs) lipopolysaccharide (LPS)-induced apoptosis was inhib-
ited by cilostazol, a selective phosphodiesterase 3 inhibitor, via increase in cAMP, activation
of MEK1/2–ERK1/2 and p38, and activation of CREB [38].

There can be signaling from the Gi-coupled receptors to CREB activation, although
the Gαi subunits inhibit AC. For instance, the relaxin family peptide receptor 1 (RXFP1) is
coupled with Gαi3 and can activate the Gβγ–PI3K–PKCζ (protein kinase Czeta)–AC path-
way [39] (Figure 1). Survival of human pancreatic islet microvascular ECs was enhanced by
gastrointestinal ghrelin gene products acting via their receptor GHS-R1a (growth hormone
secretagogue receptor 1a), which induced activation of the AC–cAMP–PKA pathway [27]
(Table 1). GHS-R1a is mainly coupled to Gαq/11 but also to Gi [33].
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2.2. Gi/o Proteins and Ras–Raf–MEK1/2–ERK1/2 Pathway

A cell’s choice between survival and apoptosis can be determined by the balance be-
tween activities of members of the family of mitogen-activated protein kinases (MAPKs)—
ERK, JNK (c-Jun NH2-terminal protein kinase), and p38 MAPK [40]. It appears that apopto-
sis can be promoted by activation of JNK and p38, accompanied by inhibition of ERK [40].
Hyperglycemia-induced apoptosis in ECs can be inhibited by activation of ERK1/2 [27].
Like other cells, in ECs, ERK1/2 is an element of the Ras–Raf-1–MEK1/2–ERK1/2 path-
way [41]. Direct activation of Gi proteins by ROS induces ERK1/2 activation [24,25]. How
can activation of Gi proteins lead to activation of the Ras–Raf–MEK1/2–ERK1/2 pathway?
Sphingosine-1-phosphate (S1P), a platelet-derived phospholipid, binds to its receptors,
presented by five isotypes—S1P1 [also known as Edg1 (endothelial differentiation gene 1)],
S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8) receptors [34]. Among these recep-
tors, S1P1 is exclusively coupled to Gi/o proteins [34]. In HUVECs and HEK293 cells, the Gi
proteins downstream of Edg-1 (S1P1 receptor) were shown to activate ERK-2 and promote
survival [42]. Activation of ERK1/2 by the Gi proteins [35,42] may result from activation of
the small GTPase Ras, by Gβγ dimers dissociated from the Gαi subunit [43,44] (Figure 1).
Thus, the Gβγ dimers, which can be activated via ROS-induced activation of Gαi [24,25]
are likely to activate the Ras–Raf-1–MEK1/2–ERK1/2 cascade in a receptor-independent
manner, and to promote EC survival (Figure 1).

2.3. Gi/o Proteins and the PI3K–Akt Pathway

The activation of the PI3K–Akt is a well-established pro-survival pathway [45–47].
In human pulmonary artery ECs (HPAECs), Gβγ dimers when dissociated from the Gi-
coupled S1P1 receptor stimulated by S1P, can activate PI3K [48] (Figure 1). While in bovine
aortic ECs (BAECs), the S1P1 receptor activation was reported to activate PI3K–Akt in a
different way [49]. Therefore, Gβγ downstream of the S1P1 receptor, successively activated
the Src tyrosine kinase, Tiam1 [(T-lymphoma invasion and metastasis gene 1), a guanine
nucleotide exchange factor (GEF) for Rac1], Rac1, PI3K, Akt, and endothelial nitric oxide
synthase (eNOS) [49]. In HUVECs, adenosine receptor type 1 (A1AR), which is coupled to
Gi proteins [28], enhances HUVECs’ survival via activation of the PI3K–Akt pathway [29]
(Table 1). Thus, Gβγ, which can be activated due to ROS-induced activation of Gαi
(Nishida) [24,25] is likely to activate the PI3K–Akt pathway in a receptor-independent
manner, and promote EC survival (Figure 1).

2.4. Gi/o Proteins and Pro-Apoptotic Pathways in ECs

It should be noted here that activation of the Gi/o-coupled receptors may also lead to
EC apoptosis (Table 1). In HUVECs, stimulation of cannabinoid receptors (CB1 and CB2
are both coupled to Gi/o proteins [30]) by anandamide, induced apoptosis via activation of
the JNK and p38 MAPK [31]. In human coronary artery ECs (HCAECs), stimulation of the
CB1 receptor led to apoptosis via increase in ROS generation and activation of JNK and
p38 MAPKs [32].

3. ROS Can Mimic Insulin Signaling

Non-insulin-dependent diabetes mellitus (NIDDM) is regarded as a significant con-
tributor to the development of endothelial dysfunction [50]. There are paradoxical interre-
lationships between ROS and insulin signaling. ROS are known to participate in insulin
signal transduction, as well as to evoke insulin resistance [51–54].

3.1. Reversible Inhibition of Protein Tyrosine Phosphatase 1B (PTP1B) by ROS

Insulin induces activation of NADPH oxidases [53,54], and the generated ROS tran-
siently inhibit protein tyrosine phosphatase 1B (PTP1B) [55]. Increased insulin sensitivity
was observed in mice deficient of PTP1B [56,57]. In a mouse model of pancreatic islet
transplantation into eye, deletion of PTP1B, elevated revascularization of the graft islet,
increased graft survival, facilitated recovery of normoglycemia, and improved glucose
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tolerance [58]. These effects of loss of PTP1B were mediated via an increase in the expres-
sion of VEGF-A by β cells, following activation of the peroxisome proliferator-activated
receptor γ coactivator 1α (PGC1α) and the estrogen-related receptor α [58].

3.2. Indirect Activation of the PI3K–Akt Pathway

There are several points where ROS can enhance the signal transduction through the
PI3K–Akt module (Figure 2). Ras GTPases can be directly activated by ROS via oxidation
of Cys118 [59]. In BAECs, peroxynitrite activated p21Ras, which in turn activated the PI3K–
PDK1–Akt pathway [60]. Furthermore, CaMKII can directly phosphorylate and activate
Akt [61]. CaMKII itself can be activated through a reversible oxidation of methionines
281/282 [62].
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Insulin receptor substrate downstream 1 (IRS-1), an adaptor protein providing spatial
organization of signaling proteins of the insulin receptor (IR), binds to the regulatory p85
subunit of PI3K, so that the catalytic p110 subunit of PI3K can convert phosphatidylinositol-
4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) [63]. PIP3
serves the binding and activation of 3-phosphoinositide-dependent kinase 1 (PDK-1), which
phosphorylates and activates its target Akt [63]. Phosphatase and the tensin homolog
deleted on chromosome 10 (PTEN), dephosphorylates PIP3, thus, interrupting signal
transduction onto Akt [64]. Exposure to H2O2 can result in the formation of a disulfide
bridge between Cys124 and Cys71 in PTEN [65], leading to its inactivation, which results
in an indirect activation of the PI3K–Akt pathway by H2O2 [65–68].

In addition, active Akt can be deactivated through dephosphorylation of Ser473 and
Thr308 by protein phosphatase 2A (PP2A) [61,69,70]. PP2A can be reversibly inhibited by
ROS through disulfide bond formation in the catalytic subunit of PP2A [69], which would
enhance the signal transduction through the PI3K–Akt pathway (Figure 2).

3.3. Small GTPase Ras and Ras–Raf–MEK–ERK Pathway

The small GTPase Ras is coupled to receptor tyrosine kinases (RTKs) via the adaptor
protein Grb2 (growth receptor binding protein 2) and GEF Sos (son-of-sevenless) [71,72].
Ras activates serine/threonine kinase Raf, which in turn activates MEK (MAP/ERK kinase),
and MEK downstream activates ERK [73]. In 3T3-L1 adipocytes, Nox4 generated H2O2-
mediated insulin-induced activation of Erk [54]. Ras–Raf–MEK1/2–ERK1/2 is a signaling
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branch downstream of RTKs, including the insulin receptor and the VEGF receptor, for
example [71,72,74]. There are four isoforms of the small GTPase Ras—H-Ras, N-Ras,
K-Ras4A, and K-Ras4B [59]. Oxidation of Cys118 located in the NKCD (Asn116-Lys117-
Cys118-Asp119) amino acid sequence is responsible for activation of Ras by ROS [59]. In
BAECs, peroxynitrite activated p21Ras via S-glutathiolation of Cys118, which led to the
activation of the Raf-1–MEK–ERK and the PI3K–PDK1–Akt pathways [60]. In addition,
Cys80, Cys181, Cys184, and Cys186 may also participate in redox regulation of Ras [59].
However, in BAECs, oxidation of Cys181/184 in H-Ras impaired its palmitoylation and
plasma membrane localization, and led to apoptosis [74].

4. Endothelial Barrier: Redox Dependence of Some Intracellular Signaling Proteins
Involved in Regulation of Endothelial Permeability

Generally, oxidative stress leads to an increase in endothelial permeability [75]. Here,
we discuss data suggesting that ROS can also contribute to the stabilization of the endothe-
lial barrier. Among multiple pathways implicated in the regulation of the endothelial
barrier [76], some can be regulated by ROS.

4.1. ROS and Gi/o Proteins

Hydroxyl radicals are likely to activate Gαi/o in a G-protein-coupled receptor (GPCR)-
independent manner [25]. It appears that GPCR-dependent activation of Gαi/o proteins has
dual effects on endothelial permeability. For example, the interleukin 8 chemokine receptor
CXCR2 is coupled to the Gi/o proteins [77] and can increase pulmonary microvascular
permeability in a murine model of LPS-induced lung injury [78]. Similarly, human cerebral
microvascular ECs impaired their barrier integrity, upon activation of CXCR2 [79].

On the other hand, there is experimental evidence for the role of Gαi in endothelial
barrier stabilization. Active Gβγ, downstream of the S1P1 receptor, activated the PI3K–Akt
pathway [48,49], which can enhance the endothelial barrier [80] (Figure 3). In calf pul-
monary artery vasa vasorum ECs (VVECs), activation of the Gi/o-coupled A1AR, increased
the endothelial barrier integrity via activation of the PI3K–Akt pathway [81]. There can be
at least three pathways that lead from active Gβγ subunits to activation of Rac1, a small
GTPase known to stabilize the endothelial barrier [76,82–84] (Figure 3). In BAECs, active
Gβγ dimers downstream of S1P1, can activate the Src–Tiam1–Rac1–PI3K–Akt pathway [49]
(Figure 3). In HPAECs, Gβγ subunits downstream of the S1P1 receptor, activated the
PI3K–Akt–Src–Tiam1–Rac1 pathway [48] (Figure 3). In calf pulmonary artery VVECs,
Gi proteins downstream of A1AR, appear to activate the SHP2 (Src homology region
2 domain-containing phosphatase-2)–Rac1–PKA pathway and to induce remodeling of the
actin cytoskeleton [82] (Figure 3).

Moreover, there seems to be a cAMP-independent pathway leading from the activa-
tion of the Gi proteins to the activation of PKA and endothelial barrier enhancement [85,86]
(Figure 3). In HPAECs, activation of P2YRs by ATP and its analogue adenosine 5′-[γ-thio]-
triphosphate (ATPγS), coupled to the Gq and Gi proteins, and led to an enhancement
of the endothelial barrier [85]. It appears that Gi proteins can activate PKA in an AC-
independent manner via the PKA-anchoring proteins (AKAPs), and PKA phosphorylates
VASP (vasodilator-stimulated phosphoprotein) and thus enhances the barrier [85]. Simi-
larly, in human lung microvascular ECs, adenosine and ATPγS stabilized the endothelial
barrier via P2Y4R (coupled to both Gq and Gi) and P2Y12R (coupled to Gi), and an uncon-
ventional cAMP-independent activation of PKA [86].
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Figure 3. Scheme illustrating the potential mechanisms for enhancement of the endothelial barrier
via ROS-induced and Gi-PCR-independent activation of the Gαi proteins and liberation activation of
the Gβγ dimers, which can further activate the AKAP2–PKA, Rac1, and the PI3K–Akt pathways.

4.2. ROS and Some Branches of Signaling Downstream of Growth Factor Receptors

In bovine pulmonary artery endothelial cells (BPAECs), activation of the MEK–ERK
pathway led to an increase in the endothelial permeability [41,87]. ROS may contribute to
the activation of the Ras–Raf–MEK–ERK pathway via a direct activation of Ras [59,74]. In
rat aortic vascular smooth muscle cells, ERK1/2 was activated by CaMKII [88], which itself
could be activated by ROS [62].

In rat coronary microvascular endothelial cells, insulin was shown to stabilize the
endothelial barrier via the PI3K–Akt pathway [80]. ROS can enhance PI3K–Akt signaling
via activation of Ras and CaMKII [59,62,74] and inactivation of PTEN and PP2A [65,66,69].

The small GTPase Rac1, which stabilizes the endothelial barrier [76,80,84], can be
directly activated by ROS [89,90].

The small GTPase RhoA can be directly inhibited by oxidants [89,90]. RhoA via activa-
tion of its downstream effector Rho-associated kinase (ROCK), induces phosphorylation of
the myosin light chain kinase (MLCK), which activates non-muscle myosin II [91], resulting
in EC contraction and increased endothelial permeability [76,83]. Inhibition of myosin
phosphatase by ROCK also contributes to non-muscle myosin II activation [92].

4.3. ROS and Ca2+-Dependent Mechanisms

Stimulation of Ca2+-dependent pathways can increase endothelial paracellular perme-
ability [76]. For example, activation of CaMKII in bovine pulmonary artery ECs disrupted
the endothelial barrier via phosphorylation of caldesmon and activation of the ERK [87].

Increase in intracellular Ca2+ may occur via opening of the Ca2+ channels of the
plasma membrane, release of Ca2+ from intracellular stores through ryanodine receptors
and inositol-trisphosphate (IP3) receptors, or from mitochondria — all these mechanisms
being regulated by ROS [93]. ROS can also activate protein kinases such as PKA type I [94],
protein kinase C [95], and CaMKII [62]. These kinases regulate both the ion channels [93]
and the endothelial permeability [76,84].
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4.4. ROS and Tyrosine Kinases and Phosphatases

The effect of Src on the endothelial barrier appears to be biphasic—initially Src can
enhance the barrier function, but prolonged action of Src impairs the endothelial barrier [96].
H2O2 can activate Src tyrosine kinase via reversible sulfenylation (Cys-SOH formation) of
two cysteine residues—Cys-185 and Cys-277 [97].

In HPAECs, c-Abl enhances the endothelial barrier, apparently via regulation of the
actin cytoskeleton [98]. Exposure of COS7 cells to high concentrations (1 mM) of H2O2,
induced a 5-fold increase in c-Abl tyrosine kinase activity [99].

In several model systems, including a mouse model of acute LPS-induced lung injury,
HUVECs, and HPAECs, Lyn tyrosine kinase was revealed to stabilize the endothelial
barrier [100]. Lyn can be directly activated by H2O2 [101].

Inhibition of PTP1B can increase paracellular endothelial permeability via an increase
in phosphorylation of vascular endothelial (VE)-cadherin and disruption of cell–cell adhe-
sions [102]. PTP1B can be inhibited by ROS [55].

5. Endothelial Dysfunction

Endothelial dysfunction is characterized by 3 main features—impaired flow-induced
endothelium-dependent vasodilatation, increased pro-inflammatory activity of endothe-
lium, and enhanced pro-thrombotic status of endothelium [103]. Oxidative stress appears to
be a key factor in the pathogenesis of endothelial dysfunction [103]. ECs are exposed to fluid
shear stress (SS), which, depending on its pattern, can be either laminar shear stress (LSS),
well-established as the anti-inflammatory and athero-protective factor, or disturbed shear
stress (DSS), which is known to lead to vascular inflammation and atherosclerosis [104–107].
H2O2 produced by ECs is itself regarded as an endothelium-derived hyperpolarizing factor,
since it directly activates the PKGIα in vascular smooth muscle cells [108,109]. It is of
interest to see if and how ROS could ameliorate endothelial dysfunction. For this purpose,
we first discuss the potential involvement of ROS in the production of NO by ECs. Next,
we regard the role of the mechano- as well as the redox-sensitive MEK5–ERK5 pathway, in
the regulation of transcription factors that are known to suppress inflammation.

Since endothelial dysfunction comprises impairment of several EC functions, agents
that possess a wide spectrum of actions are of interest as therapeutics. Phytochemicals
can serve as agents that target multiple signaling mechanisms in ECs [110,111]. In vivo
studies have shown such effects of indole-3-carbinol (I3C), a phytochemical found in
cruciferous vegetables, and its derivative 3,3,’-diindolylmethane (DIM) on EC functions
such as suppression of angiogenesis, prevention of thrombus formation, and alleviation of
inflammation. Suppression of the inflammatory response by I3C and DIM are mediated via
suppression of production and release of the inflammatory cytokines, modulation of ROS
production, inhibition of leucocyte–EC interaction, and decrease in paracellular microvas-
cular permeability. It appears that I3C and DIM can exert dual effects on ROS production;
both stimulation and inhibition of ROS generation were reported [110]. Maslinic acid, a
triterpene derivative from Olea europaea, was shown to suppress activation of NF-κB in
human dermal microvascular ECs and human placenta-derived pericytes. Suppression
of NF-κB by maslinic acid reduced the expression of adhesion molecules E-selectin, inter-
cellular adhesion molecule 1, and vascular adhesion molecule 1 on EC and pericytes, and
attenuated the development of inflammation [111].

5.1. ROS and Flow-Induced Release of Vasodilators by ECs

Here, we regard three scenarios in which, hypothetically, ROS can promote acti-
vation of eNOS and release of NO—via redox sensitive CaMKII-, PI3K–Akt-, and Gi/o-
mediated pathways.

Fluid SS activates numerous K+, Na+, Ca2+, and non-selective ion channels in ECs [112]
(Figure 4). A number of K+ and Ca2+ ion channels are themselves directly regulated by
ROS [113]. For example, the TRPC6 (transient receptor potential canonical 6) channel,
which is known to be activated by mechanical stress [114,115], can also be activated by
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H2O2 [116,117]. H2O2 can activate the L-type Ca2+ channels [118]. In addition, ion channels
are regulated by redox-sensitive protein kinases like PKA, PKC, and CaMKII [62,93–95].
Increase in [Ca2+]i activates CaMKII, but ROS can also activate CaMKII via oxidation of
methionines 281/282 in a Ca2+-independent manner [62]. Active CaMKII phosphorylates
and activates Akt [61]. Active Akt can phosphorylate and activate eNOS [46]. PP2A
can inhibit Akt by dephosphorylation [61,69,70]. Additionally, PP2A inhibits eNOS via
its dephosphorylation at Ser1177 [119]. Inhibition of PP2A by ROS [69] can, therefore,
facilitate the activation of Akt and eNOS (Figure 4). Thus, in case of stimulation of NO
production by SS via sequential activation of Ca2+ channels, CaMKII, Akt, and eNOS, ROS
can contribute to the activation of all four entities—Ca2+ channels, CaMKII, Akt, and eNOS
(Figure 4).
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In ECs, SS stimulates Akt, which activates endothelial NO synthase (eNOS) by phos-
phorylation at Ser1177 [120] or Ser 1179 [121] in a Ca2+-independent manner [46]. In this
mechanism, ROS can contribute to Akt activation (see Section 3.2).

There can be several pathways from Gi proteins to the activation of eNOS. For example,
stimulation of Gi-coupled S1P1 receptor appears to activate the following signaling cascade:
Gβγ–Src–Tiam1–Rac1–PI3K–Akt–eNOS [49] (Figure 5). Gi proteins can be activated by both
SS [122,123] and ROS [24,25], suggesting that ROS can enhance or even mimic SS-induced
Gi activation in ECs (Figure 5).

Furthermore, some steroid hormone receptors are well-established to be coupled to
Gi/o proteins and activate eNOS [124,125]. Endogenous estrogens act via three different
receptors—classical estrogen receptors α and β (ERα and ERβ) and G-protein-coupled
estrogen receptor (GPER), also known as GPR30 [126]. In immortalized ovine pulmonary
artery endothelial cells (iPAECs), the plasma membrane ERα was shown to localize to
caveolae and to stimulate eNOS [124,127] via activation of Gαi [124]. In BAECs, membrane
receptor of the adrenal dehydroepiandrosterone (DHEA) was shown to activate eNOS via
coupling to Gαi2 and Gαi3, but not Gαi1 or Gαo [125]. In this scenario, ROS can contribute
to eNOS stimulation via direct activation of the Gi/o proteins [24,25].
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5.2. ROS, MEK5–ERK5 Module and Transcription Factors (TFs) That Can Alleviate
Endothelial Dysfunction

Inflammation is regarded as a key factor in the pathogenesis of atherosclerosis [128–130].
ROS are well-known to promote inflammatory response of ECs [131]. LSS-dependent EC
survival and quiescence are mediated by TFs, such as KLF2 (Krüppel-like factor 2), KLF4, and
Nrf2 [106]. The DSS-induced pro-inflammatory response of ECs on the other hand is evoked
by TFs, such as NF-κB, AP-1, YAP/TAZ, and HIF-1α [106]. Let us regard several hypothetical
scenarios where ROS may contribute to mechanisms that prevent endothelial dysfunction via
regulation of athero-protective TFs (Figure 6).
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5.2.1. Redox-Sensitive Elements in SS-Induced Signaling Pathway Leading to
ERK5 Activation

To illustrate how ROS can influence the signal transduction on athero-protective TFs,
we have chosen the ERK5 [also known as big mitogen-activated protein kinase 1 (BMK1)]
and its upstream kinase MEK5 (MAPK/ERK kinase 5) as a signaling module that integrates
both SS-induced athero-protective signaling [132,133] and redox sensitivity [134,135]. In
BAECs, SS (12 dynes/cm2) activated ERK5 in a Ca2+-dependent and -Src-tyrosine-kinase-
independent manner [136]. Mechano-sensitivity of the MEK5–ERK5 module was also
demonstrated in HUVECs where LSS (12 dynes/cm2) activated ERK5 [133,137]. Since
Ca2+-dependent mechanisms are involved in the activation of ERK5 in BAECs [136], ROS
can interfere in these signaling proteins via effects on the Ca2+-permeable channels [93]
and via direct activation of CaMKII [62].

5.2.2. Krüppel-Like Factors (KLF) Family

TFs of the Krüppel-like factor (KLF) family include 17 members, among which KLF2,
KLF4, and KLF6 are expressed in ECs [138,139]. KLF2 and KLF4 exert anti-inflammatory,
athero-protective, and anti-thrombotic functions in ECs [138,139]. Furthermore, in HU-
VECs, KLF2 contributes to regulation of vascular tone via downregulation of endothelin-1
and adrenomedullin, and upregulation of eNOS [140]. In various types of ECs, athero-
protective laminar flow activates the MEK5–ERK5 pathway, which activates TF MEF2
(myocyte enhancer family 2), and MEF2 induces the transcription of KLF2 [132]. In HU-
VECs, laminar SS activated KLF2 via the MEK5α–ERK5 pathway [133].

5.2.3. MEF2 Family of Transcription Factors

The MEF2 family of transcription factors includes four members—MEF2A, MEF2B,
MEF2C, and MEF2D [141]. Among these factors MEF2A, MEF2C, and MEF2D, but not
MEF2B, can be phosphorylated and activated by BMK1 [141]. In human retinal ECs and
HUVECs, MEF2C was shown to inhibit tumor necrosis factor alpha (TNF-α)-induced
activation of NF-κB, to suppress the expression of pro-inflammatory genes and to decrease
leukocytes adhesion to ECs [142]. In PC12 cells, H2O2 activated the c-Src–MEK5–ERK5–
MEF2C pathway [134], suggesting that in ECs, H2O2 is also likely to activate MEF2C and
contribute to the inhibition of inflammation.

5.2.4. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)

Nrf2 is a key transcription factor, which is activated by oxidants and turns on the
cellular defense against oxidative stress [143–145]. In addition, Nrf2 can also alleviate
inflammation [146].

At physiological ROS levels, Nrf2 is kept inactive and directed to proteasomal degrada-
tion via association with the redox sensor KEAP1 (Kelch-like Ech-associated
protein 1) [147]. ROS induce dissociation of the Nrf2-KEAP1 complex and Nrf2 is then
translocated into the nucleus [147]. Nrf2 is a key TF mediating cyto-protection against
oxidative stress in HUVECs [133]. In HUVECs, laminar SS (12 dynes/cm2) was shown to
activate Nrf2 via activation of MEK5α and its effector ERK5 [133].

Normal level of ROS is well-known to provide antioxidant defense in ECs via stimula-
tion of Nrf2, which activates antioxidant response element (ARE)-dependent expression
of antioxidant genes. Nrf2-dependent vascular protection also includes the suppression
of the NF-κB-dependent pro-inflammatory pathway and improvement of the mitochon-
drial function [148]. Recently, in an in vitro model of atherosclerosis—exposure of human
coronary artery endothelial cells (HCAECs) to oxidized low-density lipoprotein (ox-LDL)—
activation of Nrf2 by prenyldiphosphate synthase subunit 2 (PDSS2) was reported. Ac-
tivation of Nrf2 decreased ferroptosis and promoted proliferation of HCAECs [149]. In
HUVECs, activation of Nrf2 by 1,25 dihydroxyvitamin D3 was shown to protect against
high glucose-induced injury [150].
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5.2.5. Peroxisome Proliferator-Activated Receptors (PPARs)

The family of nuclear receptors PPARs are presented by three subtypes—PPARα,
PPARβ/δ, and PPARγ [151]. PPARγ plays important roles in the regulation of lipid
metabolism, insulin resistance, vascular inflammation, and arterial hypertension [151]. Ex-
pression of a constitutively active mutant of PPARγ1 in HUVECs, suppressed the activation
of pro-inflammatory TFs AP-1 and NF-κB, resulting in a reduced expression of markers of
inflammation, such as ICAM-1, VCAM-1, and E-selectin [152]. In HUVECs, ERK5 mediated
flow-induced activation of PPARγ1 [137], suggesting that H2O2 — via activation of the
c-Src–MEK5–Erk5 pathway [134,135]—can also activate PPARγ1. Furthermore, ROS may
induce activation of PPARγ via generation of oxidized fatty acids, which were shown to
bind to and activate PPARγ [153].

6. Role of NADPH Oxidase-Derived ROS in Angiogenesis

There is increasing evidence that ROS derived from NADPH oxidases significantly
contribute to signaling mechanisms regulating angiogenesis, a process of formation of new
blood vessel from the pre-existing vessel. ECs’ proliferation, migration, differentiation, and
capillary tube formation constitute the main features of angiogenesis. Angiogenesis is im-
portant for embryonic development, wound healing, and post-ischemic neovascularization.
Endothelial NADPH oxidases, particularly NOX2 and NOX4, produce ROS that play im-
portant role in the regulation of angiogenesis [7,121,154–162]. Endothelial ROS generation
itself is subject to tight spatial and temporal regulation [156,163,164]. Endothelial NADPH
oxidases can be activated by growth factors, cytokines, ligands of GPCRs, mechanical
forces, and metabolic factors. Downstream, NADPH-derived ROS participate in several
cellular processes, such as regulation of self-renewal, survival, proliferation, and differ-
entiation of mesenchymal stem cells. Moreover, commitment of stem cells to adipogenic,
osteogenic, or myogenic lineage, and endothelial–mesenchymal stem cell transition are
also ROS-dependent [7]. Upstream inducers of pro-angiogenic NOX4 include hypoxia,
ischemia, VEGF, TNF-related apoptosis-inducing ligand (TRAIL), and transforming growth
factor-β1 (TGF-β1) [160].

ROS derived from NOX1 and NOX4 are important regulators of proliferation, hy-
pertrophy and apoptosis in human pulmonary artery endothelial and smooth muscle
cells, which can lead to airway and vascular remodeling. Lung airway and vascular re-
modeling lead to disorders such as pulmonary artery hypertension, chronic obstructive
pulmonary disease, asthma, and neonatal bronchopulmonary dysplasia. Factors induc-
ing NADPH oxidases and increased ROS generation in lung include hyperoxia, hypoxia,
LPS, allergens, angiopoietin-2, EGF, TGF-β, bone morphogenetic proteins, interleukins,
and S1P. Downstream, ROS activate transcription factors such as NF-κB and AP-1, which
results in the development of inflammation and vascular cell proliferation [158]. In case of
peripheral artery disease, physiological levels of NADPH oxidase-derived ROS are pro-
angiogenic and can stimulate EC proliferation, sprouting, migration, and tubule formation.
Additionally, ROS contribute to the stability of newly-formed vessels via regulation of
pericytes [159]. Pathogenesis of pulmonary arterial hypertension involves endothelial
dysfunction accompanied by smooth muscle cell proliferation, inflammation, and fibrosis.
The main underlying cause may be excessive production of ROS by NADPH oxidases
(NOX1, NOX2, NOX4) and mitochondria [121].

Surprisingly, both ROS generation by NOX4 and ROS scavenging by thioredoxin 2
(TRX2) can promote angiogenesis. TRX2, a key mitochondrial ROS scavenger, promote EC
survival and proliferation via elimination of ROS and thus enhancement of NO availability,
and also via inhibition of apoptosis signaling kinase-1 (ASK1). The mechanism of cross-talk
between NOX4 and TRX2 may depend on regulation by common angiogenic factors, such
as hypoxia, ischemia, and VEGF [160], or spatial presence of NOX4-derived ROS and
absence of mitochondrial ROS.

Effects of NADPH-derived ROS on angiogenesis depend on isoform of NADPH
oxidase. NOX4-generated ROS can promote vascular restoration after hypoxic and ischemic
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injuries and can inhibit vascular inflammation. However, in case of oxygen-induced
retinopathy, NOX4 promotes pathological angiogenesis. NOX2 appears to be involved
not only in normal physiological angiogenesis but also in pathological angiogenesis, in
cases of choroidal neovascularization, retinopathy, and tumor growth. Moreover, NOX2-
generated ROS were shown to inhibit physiological angiogenesis via activation of apoptotic
signaling in the retina and the brain, but promotes vascular restoration in ischemic hindlimb.
Additionally, activation of NOX2 by proinflammatory TNFα can contribute to vascular
inflammation [161]. NOX2-generated ROS were shown to significantly contribute to
diabetes-induced premature senescence of retinal ECs [165].

NADPH-produced ROS exert their actions on angiogenesis via regulation of intra-
cellular signaling and gene expression. ROS regulate signaling proteins via reversible
oxidation of cysteine residues to sulfenic acid (-SOH), sulfinic acid (-SO2H), and sulfonic
acid (-SO3H). Protein tyrosine phosphatases contain a conserved cysteine residue in their
catalytic domain and oxidation of this cysteine to sulfenic acid and sulfonic acid reversibly
and irreversibly, respectively, inhibit tyrosine phosphatases [162].

VEGF, a key governor of angiogenesis, regulates angiogenesis mainly via
VEGFR2 [166,167]. VEGF via VEGFR2 and Rac1 stimulates ROS production by Nox2
in ECs [163]. VEGF via VEGFR2 and Rac1 stimulates ROS production in ECs [163,168]. Sig-
nal transduction through the VEGFR2 is facilitated by reversible ROS-induced inhibition of
protein phosphatases such as SHP1 [169], LMW-PTP [170], PTP1B, and density-enhanced
phosphatase-1 (DEP1) [171]. VEGFR2 induces Nox2-dependant ROS production, leading
to a localized formation of cysteine sulfenic acid in IQCAP1 protein (Cys-OH-IQCAP1), at
the leading edge of migrating EC [167], thereby promoting directional EC migration.

Finally, ROS trigger mobilization of bone marrow progenitor cells in response to
ischemic injury. In a mouse model of hindlimb ischemia, Nox2-derived ROS were shown
to regulate the mobilization of progenitor cells from the bone marrow. Effects of hindlimb
ischemia-induced Nox2-derived ROS included increase in expression of HIF-1α and VEGF
throughout the bone marrow, elevated survival and proliferation of bone marrow Lin-
progenitor cells, Akt phosphorylation, activation of matrix metalloproteinase-9 (MMP-9),
and membrane type 1-MMP (MT1-MMP) [172].

Since mitochondria also generate ROS, the cross-talk between NADPH oxidases, and
mitochondria, the process referred to as ROS-induced ROS release (RIRR), contribute to
VEGF- and angiopoietin-1-induced angiogenesis [173–175].

7. Conclusions

The aim of this review was to analyze the literature evidence to test our hypothesis
that ROS can evoke beneficial effects on ECs. Analysis of the available experimental data
has shown that ROS can mimic, to some extent, signaling through the Gi-protein coupled
receptors, as well as insulin receptor and other growth factor receptors. Although, the
prevalent view is that ROS are responsible for an increase in paracellular endothelial per-
meability, accumulating data suggest that physiological ROS may be actively contributing
to endothelial barrier stabilization or maintenance. Development of endothelial dysfunc-
tion involves numerous signaling proteins, and a few of them can be either activated or
inhibited by ROS. In particular, vascular inflammation is one of primary conditions leading
to vascular diseases. Of great interest would be to explore the causal relationships between
ROS and the activities of transcription factors that regulate inflammatory response. Further
investigations are needed to better delineate the boundary between normal physiological
and pathological ROS levels. As ROS are tiny and short-lived, their live-cell, real-time
observation is difficult. Nevertheless, the progress in the field depends on studies of
complexes between sources of ROS and targets of ROS.
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AC, adenylyl cyclase; ASK1, apoptosis signal-regulated kinase 1. ATM, ataxia-
telangiectasia mutated; BAECs, bovine aortic ECs; CaMKII, Ca2+/calmodulin-dependent
protein kinase II; CREB, cAMP response element-binding protein; DSS, disturbed shear
stress; Duox, dual oxidase; ECs, endothelial cells; eNOS, endothelial NO synthase; ERK, ex-
tracellular signal-regulated kinase; GPCR, G protein-coupled receptor, Grb2, growth recep-
tor binding protein 2; HCAECs, human coronary artery ECs; HPAECs, human pulmonary
artery ECs; HUVECs, human umbilical vein endothelial cells; IR, insulin receptor; IRS-1,
insulin receptor substrate downstream 1; JNK, c-Jun NH2-terminal protein kinase; LPS,
lipopolysaccharide; LSS. laminar shear stress; MAPKs, mitogen-activated protein kinases;
MEF2, myocyte enhancer factor-2; MEK, mitogen-activated protein kinase/extracellular
signal-regulated kinase kinase; NIDDM, non-insulin-dependent diabetes mellitus; NOS, ni-
tric oxide synthase; Nox, NADPH oxidase; PDK-1, 3-phosphoinositide-dependent kinase 1;
PI3K. phosphatidylinositol 3-kinase; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PKA,
cAMP-dependent protein kinase; PKCζ, protein kinase Czeta; PP2A, protein phosphatase
2A; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PTP1B, protein ty-
rosine phosphatase 1B; RBCs, red blood cells; ROS, reactive oxygen species; RTKs, receptor
tyrosine kinases; S1P, sphingosine-1-phosphate; SS, shear stress; TFs, transcription factors;
VEGF-A, vascular endothelial growth factor A; VEGFR-2, VEGF receptor-2; and VSMCs,
vascular smooth muscle cells.
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