222 research outputs found

    Geographical distribution of American cutaneous leishmaniasis and its phlebotomine vectors (Diptera: Psychodidae) in the state of São Paulo, Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>American cutaneous leishmaniasis (ACL) is a re-emerging disease in the state of São Paulo, Brazil. It is important to understand both the vector and disease distribution to help design control strategies. As an initial step in applying geographic information systems (GIS) and remote sensing (RS) tools to map disease-risk, the objectives of the present work were to: (i) produce a single database of species distributions of the sand fly vectors in the state of São Paulo, (ii) create combined distributional maps of both the incidence of ACL and its sand fly vectors, and (iii) thereby provide individual municipalities with a source of reference material for work carried out in their area.</p> <p>Results</p> <p>A database containing 910 individual records of sand fly occurrence in the state of São Paulo, from 37 different sources, was compiled. These records date from between 1943 to 2009, and describe the presence of at least one of the six incriminated or suspected sand fly vector species in 183/645 (28.4%) municipalities. For the remaining 462 (71.6%) municipalities, we were unable to locate records of any of the six incriminated or suspected sand fly vector species (<it>Nyssomyia intermedia</it>, <it>N. neivai</it>, <it>N. whitmani</it>, <it>Pintomyia fischeri</it>, <it>P. pessoai </it>and <it>Migonemyia migonei</it>). The distribution of each of the six incriminated or suspected vector species of ACL in the state of São Paulo were individually mapped and overlaid on the incidence of ACL for the period 1993 to 1995 and 1998 to 2007. Overall, the maps reveal that the six sand fly vector species analyzed have unique and heterogeneous, although often overlapping, distributions. Several sand fly species - <it>Nyssomyia intermedia </it>and <it>N. neivai </it>- are highly localized, while the other sand fly species - <it>N. whitmani, M. migonei, P. fischeri </it>and <it>P. pessoai </it>- are much more broadly distributed. ACL has been reported in 160/183 (87.4%) of the municipalities with records for at least one of the six incriminated or suspected sand fly vector species, while there are no records of any of these sand fly species in 318/478 (66.5%) municipalities with ACL.</p> <p>Conclusions</p> <p>The maps produced in this work provide basic data on the distribution of the six incriminated or suspected sand fly vectors of ACL in the state of São Paulo, and highlight the complex and geographically heterogeneous pattern of ACL transmission in the region. Further studies are required to clarify the role of each of the six suspected sand fly vector species in different regions of the state of São Paulo, especially in the majority of municipalities where ACL is present but sand fly vectors have not yet been identified.</p

    The Prevalence and Cost of Unapproved Uses of Top-Selling Orphan Drugs

    Get PDF
    Introduction: The Orphan Drug Act encourages drug development for rare conditions. However, some orphan drugs become top sellers for unclear reasons. We sought to evaluate the extent and cost of approved and unapproved uses of orphan drugs with the highest unit sales. Methods We assessed prescription patterns for four top-selling orphan drugs: lidocaine patch (Lidoderm) approved for post-herpetic neuralgia, modafinil (Provigil) approved for narcolepsy, cinacalcet (Sensipar) approved for hypercalcemia of parathyroid carcinoma, and imatinib (Gleevec) approved for chronic myelogenous leukemia and gastrointestinal stromal tumor. We pooled patient-specific diagnosis and prescription data from two large US state pharmaceutical benefit programs for the elderly. We analyzed the number of new and total patients using each drug and patterns of reimbursement for approved and unapproved uses. For lidocaine patch, we subcategorized approved prescriptions into two subtypes of unapproved uses: neuropathic pain, for which some evidence of efficacy exists, and non-neuropathic pain. Results: We found that prescriptions for lidocaine patch, modafinil, and cinacalcet associated with non-orphan diagnoses rose at substantially higher rates (average monthly increases in number of patients of 14.6, 1.45, and 1.58) than prescriptions associated with their orphan diagnoses (3.12, 0.24, and 0.03, respectively (p75%). Increases in lidocaine patch use for non-neuropathic pain far exceeded neuropathic pain (10.2 vs. 3.6 patients, p<0.001). Discussion In our sample, three of four top-selling orphan drugs were used more commonly for non-orphan indications. These orphan drugs treated common clinical symptoms (pain and fatigue) or laboratory abnormalities. We should continue to monitor orphan drug use after approval to identify products that come to be widely used for non-FDA approved indications, particularly those without adequate evidence of efficacy

    Toxoplasma gondii-Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite

    Get PDF
    Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival
    corecore