92 research outputs found

    A Frame Element Model for the Nonlinear Analysis of FRP-Strengthened Masonry Panels Subjected to In-Plane Loads

    Get PDF
    A frame element model for evaluating the nonlinear response of unstrengthened and FRP-strengthened masonry panels subjected to in-plane vertical and lateral loads is presented. The proposed model, based on some assumptions concerning the constitutive behaviour of masonry and FRP material, considers the panel discretized in frame elements with geometrical and mechanical properties derived on the basis of the different states characterizing the sectional behaviour. The reliability of the proposed model is assessed by considering some experimental cases deduced from the literature

    Time-dependent cyclic behavior of reinforced concretebridge columns under chlorides-induced corrosion andrebars buckling

    Get PDF
    This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns

    Electrophysiological neuromuscular alterations and severe fatigue predict long-term muscle weakness in survivors of COVID-19 acute respiratory distress syndrome

    Get PDF
    IntroductionLong-term weakness is common in survivors of COVID-19-associated acute respiratory distress syndrome (CARDS). We longitudinally assessed the predictors of muscle weakness in patients evaluated 6 and 12 months after intensive care unit discharge with in-person visits.MethodsMuscle strength was measured by isometric maximal voluntary contraction (MVC) of the tibialis anterior muscle. Candidate predictors of muscle weakness were follow-up time, sex, age, mechanical ventilation duration, use of steroids in the intensive care unit, the compound muscle action potential of the tibialis anterior muscle (CMAP-TA-S100), a 6-min walk test, severe fatigue, depression and anxiety, post-traumatic stress disorder, cognitive assessment, and body mass index. We also compared the clinical tools currently available for the evaluation of muscle strength (handgrip strength and Medical Research Council sum score) and electrical neuromuscular function (simplified peroneal nerve test [PENT]) with more objective and robust measures of force (MVC) and electrophysiological evaluation of the neuromuscular function of the tibialis anterior muscle (CMAP-TA-S100) for their essential role in ankle control.ResultsMVC improved at 12 months compared with 6 months. CMAP-TA-S100 (P = 0.016) and the presence of severe fatigue (P = 0.036) were independent predictors of MVC. MVC was strongly associated with handgrip strength, whereas CMAP-TA-S100 was strongly associated with PENT.DiscussionElectrical neuromuscular abnormalities and severe fatigue are independently associated with reduced MVC and can be used to predict the risk of long-term muscle weakness in CARDS survivors

    Association of COVID-19 Vaccinations With Intensive Care Unit Admissions and Outcome of Critically Ill Patients With COVID-19 Pneumonia in Lombardy, Italy

    Get PDF
    IMPORTANCE Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. OBJECTIVE To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. EXPOSURES COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). MAIN OUTCOMES AND MEASURES The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. RESULTS Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] agewas 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dosewas 0.03 (95% CI, 0.03-0.04; P <.001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P <.001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P <.001), primarily male individuals (110 patients [ 79.1%] vs 252 patients [60.9%]; P <.001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P <.001) and had higher ratio of arterial partial pressure of oxygen (PaO2) and fraction of inspiratory oxygen (FiO(2)) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P =.007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower PaO2/FiO(2) at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. CONCLUSIONS AND RELEVANCE In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status.These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people

    Performance of Lifelines During the 2002 Molise, Italy, Earthquake

    No full text
    corecore