11,251 research outputs found

    The Dirac Quantum Cellular Automaton in one dimension: Zitterbewegung and scattering from potential

    Full text link
    We study the dynamical behaviour of the quantum cellular automaton of Refs. [1, 2], which reproduces the Dirac dynamics in the limit of small wavevectors and masses. We present analytical evaluations along with computer simulations, showing how the automaton exhibits typical Dirac dynamical features, as the Zitterbewegung and the scattering behaviour from potential that gives rise to the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical and atomic-physics quantum simulator.Comment: 8 pages, 7 figure

    Quantum Field as a quantum cellular automaton: the Dirac free evolution in one dimension

    Full text link
    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be effi- ciently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of an hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics.Comment: 21 pages, 4 figure

    A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

    Get PDF
    We present a multi-word atomic (1,N) register for multi-core machines exploiting Read-Modify-Write (RMW) instructions to coordinate the writer and the readers in a wait-free manner. Our proposal, called Anonymous Readers Counting (ARC), enables large-scale data sharing by admitting up to 23222^{32}-2 concurrent readers on off-the-shelf 64-bits machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers. Further, ARC avoids multiple copies of the register content when accessing it---this affects classical register's algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces improves performance via a proper limitation of RMW instructions in case of read operations, and by supporting constant time for read operations and amortized constant time for write operations. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of more modern paradigms such as cloud computing.Comment: non

    Statistical Learning Theory for Location Fingerprinting in Wireless LANs

    Get PDF
    In this paper, techniques and algorithms developed in the framework of statistical learning theory are analyzed and applied to the problem of determining the location of a wireless device by measuring the signal strengths from a set of access points (location fingerprinting). Statistical Learning Theory provides a rich theoretical basis for the development of models starting from a set of examples. Signal strength measurement is part of the normal operating mode of wireless equipment, in particular Wi-Fi, so that no custom hardware is required. The proposed techniques, based on the Support Vector Machine paradigm, have been implemented and compared, on the same data set, with other approaches considered in the literature. Tests performed in a real-world environment show that results are comparable, with the advantage of a low algorithmic complexity in the normal operating phase. Moreover, the algorithm is particularly suitable for classification, where it outperforms the other techniques

    Solutions of a two-particle interacting quantum walk

    Full text link
    We study the solutions of the interacting Fermionic cellular automaton introduced in Ref. [Phys Rev A 97, 032132 (2018)]. The automaton is the analogue of the Thirring model with both space and time discrete. We present a derivation of the two-particles solutions of the automaton, which exploits the symmetries of the evolution operator. In the two-particles sector, the evolution operator is given by the sequence of two steps, the first one corresponding to a unitary interaction activated by two-particle excitation at the same site, and the second one to two independent one-dimensional Dirac quantum walks. The interaction step can be regarded as the discrete-time version of the interacting term of some Hamiltonian integrable system, such as the Hubbard or the Thirring model. The present automaton exhibits scattering solutions with nontrivial momentum transfer, jumping between different regions of the Brillouin zone that can be interpreted as Fermion-doubled particles, in stark contrast with the customary momentum-exchange of the one dimensional Hamiltonian systems. A further difference compared to the Hamiltonian model is that there exist bound states for every value of the total momentum, and even for vanishing coupling constant. As a complement to the analytical derivations we show numerical simulations of the interacting evolution.Comment: 16 pages, 6 figure

    Planning through Automatic Portfolio Configuration: The PbP Approach

    Get PDF
    In the field of domain-independent planning, several powerful planners implementing different techniques have been developed. However, no one of these systems outperforms all others in every known benchmark domain. In this work, we propose a multi-planner approach that automatically configures a portfolio of planning techniques for each given domain. The configuration process for a given domain uses a set of training instances to: (i) compute and analyze some alternative sets of macro-actions for each planner in the portfolio identifying a (possibly empty) useful set, (ii) select a cluster of planners, each one with the identified useful set of macro-actions, that is expected to perform best, and (iii) derive some additional information for configuring the execution scheduling of the selected planners at planning time. The resulting planning system, called PbP (Portfolio- based Planner), has two variants focusing on speed and plan quality. Different versions of PbP entered and won the learning track of the sixth and seventh International Planning Competitions. In this paper, we experimentally analyze PbP considering planning speed and plan quality in depth. We provide a collection of results that help to understand PbP�s behavior, and demonstrate the effectiveness of our approach to configuring a portfolio of planners with macro-actions

    Quantum Walks, Weyl equation and the Lorentz group

    Full text link
    Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the quantum walk dynamics. In particular, among the symmetries of the quantum walk which recovers the Weyl equation--the so called Weyl walk--one finds a non linear realisation of the Poincar\'e group, which recovers the usual linear representation in the small wave-vector limit. In this paper we characterise the full symmetry group of the Weyl walk which is shown to be a non linear realization of a group which is the semidirect product of the Poincar\'e group and the group of dilations.Comment: 9 pages, 2 figure
    corecore