44 research outputs found

    An investigation on the vibroacoustic behavior of systems in similitude

    Get PDF
    Similitude theory allows engineers to establish the necessary conditions to design a scaled - up or down - model of a full-scale prototype structure. In recent years, the research on similitude methods, which allow to design the models and establish similitude conditions and scaling laws, has grown so that many obstacles associated with full-scale testing, such as cost and setup, may be overcome. This thesis aims at, on the one hand, expanding the possibilities of similitude methods by means of their application to new structural configurations; on the other hand, at the investigation of new approaches. Therefore, similitude conditions and scaling laws of thin aluminium plates with clamped-free-clamped-free boundary conditions, first, and aluminium foam sandwich plates with simply supported and free-free boundary conditions, then, are derived. Particularly, two sets of conditions are derived for the sandwich plates: the first by expliciting all the geometrical and material properties, the second by combining some parameters into just one with physical meaning, that is, the bending stiffness. These conditions and laws are successively validated by means of dynamic experimental tests, in which reconstructions of the natural frequencies and the velocity response of the prototype are attempted. Also the prediction of the radiated acoustic power is performed for the sandwich plates. All the tests highlight that these laws do not work fine when the models are distorted, i.e., when the similitude conditions are not satisfied. Therefore, the potentialities of machine learning are investigated and used to establish degrees of correlation between similar systems, without invoking governing equations and/or solution schemes. In particular, artificial neural networks are used in order to predict the dynamic characteristics, first, and the scaling parameters, then, of beams, as test (since they do not exhibit distorted models), and plates. In the latter case, the predictions of the artificial neural networks are validated by the results provided by the experimental tests. The networks prove to be robust to noise, very helpful in predicting the response characteristics, and identifying the model type. Finally, the similitude methods are used as a tool for supporting, and eventually validating, noisy experimental measurements, not for predicting the prototype behavior. In this way, they can help to understand if a set of measurements is reliable or not. Therefore, the sandwich plates are analysed with digital image correlation cameras. Then, with the help of an algorithm for blind source separation, the force spectra and velocity responses are reconstructed. It is demonstrated that the similitude results are coherent with the quality of the experimental measurements, since the curves overlap when the spatial patterns are recognizable. Instead, when the displacement field is too polluted by noise, the reconstruction exhibits discrepancies. This proves that the application of similitude methods should not be underestimated, especially in the light of the expanding range of approaches which can extract important information from noisy observations

    Similitude theory applied to plates in vibroacoustic field: a review up to 2020

    Get PDF
    Similitude methods are a set of tools which allow the design of scaled-up or scaled-down models of a full-scale structure called a prototype. In this way, the financial and temporal costs of experimental tests, and the problems associated with the set-up of too large (or small) test articles, may be overcome. This article provides a brief review of similitude methods applied to plates in a vibroacoustic field. Particularly, it is dedicated to a thorough analysis of similitude conditions and scaling laws for uncovering commonalities and differences, and physical interpretations, obtained from applying different scaling methods

    A Review of Similitude Methods for Structural Engineering

    Get PDF
    Similitude theory allows, through a set of tools known as similitude methods, to establish the conditions to design a scaled (up or down) model of a full-scale structure, usually defined as prototype. In the last years, to overcome the problems associated with full-scale testing, such as costs and setup, research on similitude methods has grown and their application has expanded in many branches of engineering. The aim of this paper is to provide a review as comprehensive as possible about similitude methods applied to structural engineering; after a brief historical introduction and a more deep analysis of the main methods, the article focuses on the applications classified by test articles

    Gaussian-Based Machine Learning Algorithm for the Design and Characterization of a Porous Meta-Material for Acoustic Applications

    Get PDF
    The scope of this work is to consolidate research dealing with the vibroacoustics of periodic media. This investigation aims at developing and validating tools for the design and characterization of global vibroacoustic treatments based on foam cores with embedded periodic patterns, which allow passive control of acoustic paths in layered concepts. Firstly, a numerical test campaign is carried out by considering some perfectly rigid inclusions in a 3D-modeled porous structure; this causes the excitation of additional acoustic modes due to the periodic nature of the meta-core itself. Then, through the use of the Delany–Bazley–Miki equivalent fluid model, some design guidelines are provided in order to predict several possible sets of characteristic parameters (that is unit cell dimension and foam airflow resistivity) that, constrained by the imposition of the total thickness of the acoustic package, may satisfy the target functions (namely, the frequency at which the first Transmission Loss (TL) peak appears, together with its amplitude). Furthermore, when the Johnson–Champoux–Allard model is considered, a characterization task is performed, since the meta-material description is used in order to determine its response in terms of resonance frequency and the TL increase at such a frequency. Results are obtained through the implementation of machine learning algorithms, which may constitute a good basis in order to perform preliminary design considerations that could be interesting for further generalizations

    A Linear Transformation for the Reconstruction of the Responses of Systems in Similitude

    Get PDF
    Recent years have seen an increasing interest towards similitude methods. In fact, the possibility of testing a scaled model, instead of a full-scale prototype, leads to many advantages: financial and time savings, easier experimental setups, etc. However, similitudes have drawbacks, too, mainly due to non-scalable effects and partial similitude, which prevent from an accurate reconstruction of the prototype response. For these reasons, an alternative method which can bypass these limitations is needed. A new method, called VOODOO (Versatile Offset Operator for the Discrete Observation of Objects), is herein proposed: it is based on the definition of a transformation matrix which links the outputs of a given linear systems to those belonging to another system, which may be a scaled model. The responses are acquired on a discrete number of points for both the systems. This work aims at investigating the method’s strengths and limitations of the method. The results show that, although VOODOO exhibits some lack of accuracy in off-design conditions due to the loss of spatial correlation, it is able to overcome some major restrictions that affect all similitude methods

    Transmission Loss Analyses on Different Angular Distributions of Periodic Inclusions in a Porous Layer

    Get PDF
    The scope of this paper is to investigate the sound transmission loss of an acoustic package of glass wool with embedded periodic inclusions, considering the possibility to improve a standard configuration and inserting the innovative package in a practical configuration used in the aeronautic field for noise suppression. Periodic inclusions are introduced to enhance the sound transmission loss performance of the acoustic package in the mid-high range of frequencies. The main interest of the present work, with respect to the state of the art, is represented by the arrangement of the inclusions one respect to the others, then creating an inclusion pattern that improves the performance of the periodicity peak. To reach this goal, a numerical model of the package is studied, and the effect of the patterns of periodic inclusions is simulated. The pattern behavior is evaluated for eight configurations, which are different from each other for the cubic dimensions and the inclusion radii. Furthermore, an optimized configuration for aeronautical applications is designed starting from the studied acoustic package; then, the results in terms of mass and performance are discussed. Results are presented in terms of tables and graphs, which may constitute a good basis to perform preliminary design consideration that could be interesting for further generalizations

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF
    LPT

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
    corecore