6 research outputs found

    Donor/recipient mixed chimerism does not predict graft failure in children with β-thalassemia given an allogeneic cord blood transplant from an HLA-identical sibling

    Get PDF
    Background Donor/recipient mixed chimerism has been reported to be associated with an increased risk of graft failure in patients with β-thalassemia given a bone marrow transplant. We investigated the relationship between the degree of mixed chimerism over time and clinical outcome of children undergoing cord blood transplantation for β-thalassemia.Design and Methods Twenty-seven consecutive children given a cord blood transplant from a related donor were analyzed by short tandem repeat polymerase chain reaction and their chimerism results were compared with those of 79 consecutive patients who received a bone marrow transplant from either a relative (RD-BMT, n=42) or an unrelated donor (UD-BMT, n=37). Cord blood and bone marrow recipients received comparable preparative regimens.Results All cord blood recipients engrafted and displayed mixed chimerism early after transplantation; 13/27 converted to full donor chimerism over time, while 14 maintained stable mixed chimerism; all patients are alive and transfusion-independent. Twenty-four of the 79 bone marrow-recipients (12 UD- and 12 RD-BMT) exhibited full donor chimerism at all time points examined, 4/79 (2 UD- and 2 RD-BMT) did not engraft and 51/79 (23 UD- and 28 RD-BMT) displayed mixed chimerism at the time of hematologic reconstitution. Forty of 51 bone marrow recipients with mixed chimerism converted to full donor chimerism (17 UD- and 23 RD-BMT), 3/51 maintained stable mixed chimerism (1 UD- and 2 RD-BMT), while 8/51 (5 UD- and 3 RD-BMT) progressively lost the graft, and became transfusion-dependent again.Conclusions Mixed chimerism is a frequent event and does not predict the occurrence of graft failure in children with β-thalassemia given a cord blood transplant from a relative

    Clonal chromosome anomalies and propensity to myeloid malignancies in congenital amegakaryocytic thrombocytopenia (OMIM 604498).

    Get PDF
    Congenital amegakaryocytic thrombocytopenia (CAMT, OMIM 604498) is an autosomal recessive disorder characterized by absent or reduced number of megakaryocytes in the bone marrow (BM) since birth, elevated serum levels of thrombopoietin (TPO), and very low platelet count. Prognosis of CAMT patient

    Chromosome anomalies in bone marrow as primarycause of aplastic or hypoplastic conditions andperipheral cytopenia: disorders due to secondaryimpairment of RUNX1 and MPL genes

    Get PDF
    Background Chromosome changes in the bone marrow (BM) of patients with persistent cytopenia are often considered diagnostic for a myelodysplastic syndrome (MDS). Comprehensive cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in cases with cytopenia without morphological signs of MDS. Results Chromosome anomalies were found in the BM of three patients, without any morphological evidence of MDS: 1) an acquired complex rearrangement of chromosome 21 in a boy with severe aplastic anaemia (SAA); the rearrangement caused the loss of exons 2-8 of the RUNX1 gene with subsequent hypoexpression. 2) a constitutional complex rearrangement of chromosome 21 in a girl with congenital thrombocytopenia; the rearrangement led to RUNX1 disruption and hypoexpression. 3) an acquired paracentric inversion of chromosome 1, in which two regions at the breakpoints were shown to be lost, in a boy with aplastic anaemia; the MPL gene, localized in chromosome 1 short arms was not mutated neither disrupted, but its expression was severely reduced: we postulate that the aplastic anaemia was due to position effects acting both in cis and in trans, and causing Congenital Amegakaryocytic Thrombocytopenia (CAMT). Conclusions A clonal anomaly in BM does not imply per se a diagnosis of MDS: a subgroup of BM hypoplastic disorders is directly due to chromosome structural anomalies with effects on specific genes, as was the case of RUNX1 and MPL in the patients here reported with diagnosis of SAA, thrombocytopenia, and CAMT. The anomaly may be either acquired or constitutional, and it may act by deletion/disruption of the gene, or by position effects. Full cytogenetic investigations, including a-CGH, should always be part of the diagnostic evaluation of patients with BM aplasia/hypoplasia and peripheral cytopenias
    corecore