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Abstract 

Background 

Chromosome changes in the bone marrow (BM) of patients with persistent cytopenia are 

often considered diagnostic for a myelodysplastic syndrome (MDS). Comprehensive 

cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in 

cases with cytopenia without morphological signs of MDS. 

Results 

Chromosome anomalies were found in the BM of three patients, without any morphological 

evidence of MDS: 1) an acquired complex rearrangement of chromosome 21 in a boy with 

severe aplastic anaemia (SAA); the rearrangement caused the loss of exons 2–8 of the 

RUNX1 gene with subsequent hypoexpression. 2) a constitutional complex rearrangement of 

chromosome 21 in a girl with congenital thrombocytopenia; the rearrangement led to RUNX1 

disruption and hypoexpression. 3) an acquired paracentric inversion of chromosome 1, in 

which two regions at the breakpoints were shown to be lost, in a boy with aplastic anaemia; 

the MPL gene, localized in chromosome 1 short arms was not mutated neither disrupted, but 

its expression was severely reduced: we postulate that the aplastic anaemia was due to 

position effects acting both in cis and in trans, and causing Congenital Amegakaryocytic 

Thrombocytopenia (CAMT). 



Conclusions 

A clonal anomaly in BM does not imply per se a diagnosis of MDS: a subgroup of BM 

hypoplastic disorders is directly due to chromosome structural anomalies with effects on 

specific genes, as was the case of RUNX1 and MPL in the patients here reported with 

diagnosis of SAA, thrombocytopenia, and CAMT. The anomaly may be either acquired or 

constitutional, and it may act by deletion/disruption of the gene, or by position effects. Full 

cytogenetic investigations, including a-CGH, should always be part of the diagnostic 

evaluation of patients with BM aplasia/hypoplasia and peripheral cytopenias. 

Keywords 

SAA, Thrombocytopenia, CAMT, RUNX1, MPL, Chromosome structural anomalies, 
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Background 

In the clinical practice, the finding of an acquired chromosome change in a patient with 

persistent peripheral cytopenia and aplastic or hypoplastic bone marrow (BM), in absence of 

conclusive morphologic features, is usually interpreted as an indicative sign of 

myelodysplastic syndrome (MDS), although the World Health Organization (WHO) 

classification of myeloid neoplasms lists only 14 recurrent anomalies as presumptive 

evidence of MDS [1]. In the years 2000–2011 we performed cytogenetic investigations, as 

part of routine work, in 87 pediatric patients with persistent cytopenia, either uni-, bi- or 

trilinear, during their diagnostic evaluation. In this heterogeneous cohort we found 

monosomy 7 and trisomy 8 in two patients each, all eventually diagnosed as MDS; increased 

chromosome breakage was observed in three cases then diagnosed as Fanconi anaemia (FA); 

an isochromosome for the long arms of chromosome 7 was present in one patient with 

previously undiagnosed Shwachman-Diamond Syndrome; trisomy 8 was found in one patient 

in whom MPL gene mutations demonstrated a congenital amegacaryotic thrombocytopenia 

(CAMT, OMIM # 604998) [2]; a translocation t(8;17)(p21;q25) was present in a patient with 

features of Blackfan-Diamond Anaemia. Moreover, in at least three patients out of 87, 

without any morphological evidence of MDS, a structural chromosome anomaly in the BM 

was the primary event leading to a specific disease. We report here these three patients, and 

suggest that this pathogenetic pathway may be rather frequent. Complex structural anomalies 

of chromosome 21 were present in two of these patients, leading to the disruption or to the 

loss of the RUNX1 gene, with decreased expression and different haematological and clinical 

pictures: severe aplastic anaemia (SAA) and congenital thrombocytopenia. In the third 

patient, a paracentric inversion of chromosome 1 was present, and we postulate that it led to 

aplastic anaemia through position effects on the MPL gene, with severely reduced expression; 

this interpretation turned the diagnosis to CAMT. 

Clinical reports 

Patient 1 

Male child, born in 1997 from non-consanguineous parents, who was diagnosed in 2004 with 

SAA with the following blood counts: RBC 1.66x10
12

/L, Hb 58 g/L, reticulocytes 0.035, 

platelet 11x10
9
/L, WBC 1.8x10

9
/L with 75.4% neutrophils, 11.2% lymphocytes, 12.7% 



monocytes, 0.5% eosinophils, 0.2% basophils. BM biopsy showed decreased cellularity 

(10%) with a picture of severe hypoplasia affecting in particular the granulocytic and 

megakaryocytic lineages. Glycoforin and myeloperoxidase immunostaining showed fair 

conservation of the erythroid series and severe scarcity of the granulopoietic one. The 

diepoxybutane (DEB) test excluded FA. Two cycles of immunosuppressive therapy were 

administered in February and August 2004, according to the protocol “EBMT SAA Working 

Party” consisting of anti-lymphocyte globulin, cyclosporine A, prednisone, and granulocyte-

colony stimulating factor (G-CSF). A slow, progressive improvement was obtained, with no 

further need for transfusions. In August 2006 the patient did fairly well and his blood counts 

were as follows: RBC 3.79x10
12

/L, Hb 121 g/L, platelet 88x10
9
/L, WBC 2.9x10

9
/L, with 

56.4% neutrophils, 32.2% lymphocytes, 0.3% monocytes, 0.1% eosinophils, 0 basophils. BM 

cellularity was increased, with particular regard to the granulocytic and megakaryocytic 

components. The platelet morphology and function were normal, except for the presence of 

spontaneous platelet aggregation. From 2007 to 2009 he remained in fairly good health 

notwithstanding a progressive decrease of Hb, RBC, WBC and platelet values. At the 

beginning of 2009, the patient became gain dependent on platelet and erythrocyte transfusion. 

In June 2009, an HLA-identical unrelated donor was found and the patient underwent 

transplantation of haematopoietic stem cells (HSCT) a month later, after receiving a 

conditioning regimen including fludarabine and low-dose cyclophosphamide. The allograft 

was rejected and a second transplant was performed, employing the HLA-partially matched 

mother as donor. The patient was given a T-depleted allograft, consisting of positively 

selected CD34+ cells after a preparative regimen including treosulfan and fludarabine. This 

second allograft resulted in an engraftment of donor cells, although the haematopoietic 

recovery was incomplete as the patient remained dependent of platelet transfusion and the 

neutrophil count did not exceed 0.20x10
9
/L. For this reason, a second infusion of positively 

selected CD34+ cells was performed in February 2010 without any preparative regimen. 

After this third allograft, the patient recovered normal cell blood counts and he is now alive, 

in complete donor chimerism without any sign of graft-versus-host disease. 

Patient 2 

Female child, born in 2000 from non-consanguineous parents, who was hospitalized due to 

thrombocytopenia discovered at 11 days of life (platelets 54x10
9
/L), and then again 

confirmed at 7 months. She had a small defect of the ventricular septum, which subsequently 

closed spontaneously; cow’s milk intolerance was diagnosed. In the course of the years, her 

thrombocytopenia remained moderate and asymptomatic (e.g. 79x10
9
/L at 7 years, and 

91x10
9
/L at 10 years) and was monitored until 10 years of age, being accompanied by mild 

normocytic anaemia (Hb 100–112 g/L), with normal reticulocyte count, and normal foetal 

haemoglobin. The examination of a BM smear at 8 years of age showed an almost normal 

presence of all cell lines, with some reduction of the erythroid series. A comprehensive 

clinical evaluation failed to reveal any dysmorphisms or other pathological signs. 

The DEB test excluded FA. No mutations of the MPL and RUNX1 genes were present. 

Patient 3 

Male child, born in 2004 from 4
th

 degree consanguineous parents, who was referred for 

aplastic anaemia. He had an elder sister, born in 2000, in whom a diagnosis of aplastic 

anaemia was made at 14 months of age in Tunis, Morocco, with blood counts referred as 

follows: Hb 45 g/L, WBC 3.4x10
9
/L, platelets 7x10

9
/L; no malformative/dysmorphic signs 

were present; her karyotype has been referred as normal, both on BM and on PB. She died at 



the age of two years for a severe infection. Another elder sister, born in 1996, is in good 

health. Then, in 2011, a healthy brother was born. 

The child was examined in August 2007, when his blood counts showed: Hb 62 g/L, RBC 

2.97x10
12

/L, WBC 2.5x10
9
/L with 13% neutrophils, 83% lymphocytes, 0.4% monocytes, 

2.7% eosinophils, 0.4% basophils, platelets 18x10
9
/L. BM trephine biopsy revealed severely 

reduced cellularity, with a few residual myeloid and erythroid elements and no 

megakaryocytes (Mks). Eight months later, a further biopsy revealed complete BM aplasia. 

The DEB test excluded FA. Mutational analysis of the MPL gene, extended to the entire 

gene, was negative. Two polymorphisms in introns of the MPL gene (IVS3 130 + 47 C > T, 

and IVS6 327–41 G > A) were found in homozygosity both in the patient, and in his elder 

healthy sister. The finding that these two variants were shared in heterozygosity by the 

consanguineous parents, indicates that both children inherited from the parents the same MPL 

alleles. In the period 2007–2011, the child was treated with haematopoietic growth factors 

(G-CSF and erythropoietin) and received iron chelation treatment (intra-venous 

desferoxamine). The trilinear cytopenia remained substantially stable, and the child required 

regular transfusions of red blood cell and platelet concentrates. His blood tests consistently 

showed Hb between 70 and 85 g/L, RBC around 2x10
12

/L, WBC 1–2.5x10
9
/L, platelets 15-

40x10
9
/L. Serum thrombopoietin (TPO) level, evaluated in February 2010, was greatly 

increased: 3500 pg/mL (n. v. 6.9-54.4). Platelet surface expression of MPL, evaluated as anti-

MPL/anti-isotype ratio [3] was decreased: 1.28 (n. v. 3.18 ± 0.39). A combined cord blood 

and bone marrow HSCT was performed in July 2011, using the HLA-identical brother born 

in January 2011 as donor. The transplant was followed by complete donor engraftment and 

the progressive achievement of transfusion-independence and of a completely normal blood 

count. 

Results 

Patient 1 

The chromosome analyses on BM revealed a clonal structural anomaly of chromosome 21, 

der(21), present since 2004, a few months after the disease onset, up to June 2009, whereas 

analyses performed at two different dates in 2006 on peripheral blood (PB) 

phytohaemagglutinin (PHA)-stimulated cultures showed a normal karyotype in 100 mitoses 

scored. In most analyses on BM the cells with normal karyotype were the majority, and the 

abnormal cells were few (e.g. 2/20 in February 2006), but this proportion was in fact 

somehow variable (e.g. 10/17 in October 2005; 8/23 in May 2006). Fluorescent in situ 

hybridization (FISH) showed the lack of the signal of the probe CTD-2235K24, which 

recognizes a sequence on chromosome 21 at band q22.12, in the der(21), and this probe was 

then used on interphase nuclei in cytogenetic monitoring: it revealed the presence of the 

der(21) also when no mitoses were observed, and showed that the percentage of abnormal 

cells was 5-50% in the period 2004–2006, and progressively decreased (17-5%) in years 

2006–2008. The decreasing of the der(21) clone paralleled the appearance of a second 

independent clone with an interstitial deletion of the long arms of chromosome 13 as sole 

chromosome anomaly, int del(13)(q12-13q21). In the years 2007–2009, this clone progressed 

in size: from 1/12 to 9/15 mitoses, and from 35/604 to 317/979 nuclei, as evaluated by FISH 

with the probe RP11-1001I7, that recognize sequences at band 13q14.2. 

The banding pattern of the der(21) was interpreted as a partial duplication of the long arms: 

the FISH with the library for WCP painted the entire der(21), and the subtelomeric sequences 

were retained in the expected position as shown by the probe 21qtel07. We started to 



investigate the RUNX1 gene by FISH with the probe “LSI AML1-ETO”, designed to detect 

the translocation t(8;21), recurrent in acute myeloid leukaemia (AML): it revealed a signal of 

RUNX1 on the der(21) less intense compared to the normal 21. So we used a panel of BAC 

probes to investigate the RUNX1 gene (Table 1). Informative results are shown in Figure 1A: 

the exons 2–8 of RUNX1 were absent, the probe recognizing part of the first intron and exon 

2 gave a weak signal, while a more distal probe (RP11 – 203 G22) flanking RUNX1 was 

normally present, as was the probe RP11-79 G23, mapping at a position more close to the 

centromere, in 21q21.3 (not shown in the figure). The duplicated region was demonstrated to 

be also inverted by dual color FISH with two probes mapping in q22.2 and q22.3 (Figure 

1A). Thus, the der(21) was in fact the result of a complex rearrangement with a region 

duplicated and inverted distal to a small interstitial deletion which encompassed most 

RUNX1. 

Table 1 Probes and libraries used for FISH 

Pt Chromosome Probes/libraries Localization/Sequences recognized 

1 13 RP11-1001I7
a
 13q14.2 

21 WCP 21
b
 whole chromosome paint library 

21qtel07
c
 subtelomeric region 

AML1/ETO
d
 designed for t(8;21) 

RP11-79G23
a
 21q21.3 

RP11-203G22
a
 21q22.12 

CTD-2349F18
a
 RUNX1 gene, intron1-exon2 

CTD-2235K24
a
 RUNX1 exons 2–8 

RP11-625E21
a
 21q22.2 

RP11-88N2
a
 21q22.3 

2 21 WCP 21
b
 whole chromosome paint library 

21qtel07
c
 subtelomeric region 

AML1/ETO
d
 designed for t(8;21) 

CTD-2532E17
a
 21p11.2-11.1 

RP11-468N22
a
 21q22.11-22.12 

WI2-1915K14
e
 RUNX1 intron 1 

CTD-2349F18
a
 RUNX1 intron1-exon2 

CTD-2235K24
a
 RUNX1 exons 2–8 

WI2-942D2
e
 RUNX1 exons 2–4 

WI2-605D9
e
 RUNX1 exons 2–5 

WI2-847D7
e
 RUNX1 exon 6 

WI2-542L2
e
 RUNX1 exons 7-8 

3 1 RP11-467K11
a
 1p36.32 

RP11-372C15
a
 1p36.31 

RP11-690E2
a
 1p36.23 

RP11-113C10
a
, RP11-90B12

a
 1p34.2, flanking the MPL gene 

RP11-46G23
a
, RP11-125P23

a
 1p12 

RP11-206H22
a
 1p11.2 

a
 BAC probes, Invitrogen Corporation, Carlsbad, CA, USA 

b
 WCP, Cytocell Technologies, Cambridge, UK 

c
 21 qtel07, Cytocell Technologies, Cambridge, UK 

d
 LSI AML1/ETO dual colour dual fusion translocation probe, Abbott, Abbott Park, IL, USA 



e
 Fosmid probes, kindly provided by Prof. Peter De-Jong, BACPAC Resources Center, 

Childrens Hospital Oakland Research Institute, Oakland, CA, USA 

Patients (Pt), chromosome localization and sequences related to the genes of interest 

recognized. 

Figure 1 Ideograms of the normal chromosome 21, and of the rearranged 21s. The 

der(21) of patient 1 (A), and the inv(21) of patient 2 (B), summarizing the most informative 

FISH results. The following symbols represent the probes related to RUNX1 sequences used, 

and the corresponding exons are indicated in the figure, with signals present, not present or 

weak: # WI2-1915K14,  CTD-2349F18,  WI2-942D2, ♦ WI2-605D9, ∎ CTD-2235K24, 

□ WI2-847D7,  WI2-542L2,  weak signal, NP signal not present. The other BAC probes 

used and mentioned in the text, but not related to RUNX1 sequences, are shown in the figure 

with other symbols 

Array-based comparative genomic hybridization (a-CGH) was performed on DNA from BM 

sampled in June 2007, when the chromosome analysis showed one cell with the der(21), and 

seven with the int del(13) out of 20 mitoses; FISH on nuclei with the probes RP11-1001I7 

(13q14.2), and CTD-2235K24 (RUNX1, exons 2–8) showed 11.5% (52/452) of BM cells 

belonging to the clone with the int del(13), and 9.3% (42/453) to the clone with the der(21). 

The size of these abnormal clones was above the limits of sensitivity for their detection that 

we had previously established [4]. The a-CGH profiles identified precisely the interstitial 

deletion as int del(13)(13q13.3-q21.31) with loss of more than 26 Mb (36 836 026 – 63 185 

558 bp), and the 21q22.12-q22.3 duplication (10.3 Mb, 36 565 301 – 46 897 430 bp), but 

failed to detect the subtle deletion including the exons 2–8 of RUNX1 (Figures 2 A-B). 

Figure 2 a-CGH profiles of the regions of imbalance of patients 1 and 2. A-B: Profiles of 

chromosomes 13 and 21 of patient 1 on DNA from BM sampled in June 2007; C: Profile of 

chromosome 21 of patient 2 on DNA from PB. The profiles shown were obtained with the 

244 K genome-wide system 

The relative expression of RUNX1 was evaluated on BM twice, after two and four years from 

disease onset, when the FISH on nuclei revealed the der(21) in 41% and 5% BM cells, 

respectively; the results showed a strong hypoexpression compared to the controls in the first 

assay (Figure 3A), and a less pronounced hypoexpression in the second one (Figure 3B). 

Figure 3 Relative expression of RUNX1 in the BM of patient 1. Results two years (A), and 

four years (B) after disease onset (2006 and 2008, respectively). The dark grey bars refer to 

the patient and the light grey bars to controls’ average values. Housekeeping control genes 

were ACTB in A, and UBC in B 

Patient 2 

Cytogenetic investigations performed on BM, PHA-PB cultures, and skin fibroblast cultures 

revealed a constitutional rearrangement of chromosome 21 which had a submetacentric 

morphology suggesting a pericentic inversion, inv(21). The investigation by FISH with the 

library for WCP painted completely the inv(21), and the NOR-staining technique 

demonstrated one breakpoint to be inside the region 21p11.1-11.2, not involving the 

satellites. The FISH with the probe “21 qtel07” showed that the inversion did not involve the 

subtelomeric region, while FISH with “LSI AML1/ETO” showed two separate signals for 

RUNX1, one above and one below the centromere, indicating that the other breakpoint was 

localized inside the sequence recognized. We demonstrated that this breakpoint was between 



exons 4 and 5 inside RUNX1, being the signals related to the probes WI2-942D2 and WI2-

605D9 present both in the short and long arms with variable and reduced intensity (Figure 

1B). The probes WI2-1915K14, and CTD-2349F18 were present and not displaced by the 

inversion. The pattern of the pericentric inversion was further defined with the probes CTD – 

2532E17, RP11–468N22, and with probes recognizing RUNX1 exons 6 – 8 (Figure 1B). 

The a-CGH profile (Figure 2C) demonstrated four regions of imbalance, here described in 

order from the centromere to the telomere: 1) a duplication of 36.1 Kb inside the sequence of 

the disrupted RUNX1 gene spanning from 35 138 169 bp to 35 174 269 bp, and including 

exon 5; 2) a duplication of 38 Kb (39 669 148 – 39 707 107 bp); 3) a deletion of 1.4 Mb (43 

014 727 – 44 408 507 bp), confirmed by FISH with the lack of the signal for probe RP11 – 

88 N2, (Figure 1B); 4) a duplication of 162 Kb (46 493 951 – 46 656 014 bp), shown to be a 

benign copy number variation (CNV) by the result of a-CGH performed with the parents’ 

DNA one vs. the other, inherited from the father and included in CNV Database of Genomic 

Variants, updated March 2010 [5]. Thus, the inv(21) resulted in fact in the disruption of the 

RUNX1 gene, with a complex rearrangement including a tiny duplication of part of RUNX1 

itself, and two other imbalances, a deletion and a duplication, both more distal to RUNX1. 

The relative expression of RUNX1 evaluated on BM sample was lower than controls (Figure 

4). 

Figure 4 Relative expression of RUNX1 in the BM of patient 2. The dark grey bar refer to 

the patient and the light grey bar to controls’ average values, UBC was used as control 

Patient 3 

Repeated chromosome analyses performed on BM samples from August 2007 to March 2011 

showed a clonal paracentric inversion of the long arms of chromosome 1, inv(1)(p13p36), as 

sole acquired anomaly. The anomaly was present in 12/15 cells at the first analysis (August 

2007), then in the majority of the cells in repeated analyses from 2008 to 2011. PHA-PB 

cultures showed a normal karyotype (400 mitoses scored), and we ruled out definitely a 

constitutional mosaicism, as a normal karyotype was found also in fibroblasts from a skin 

biopsy, where it was confirmed by 200 nuclei analyzed by FISH with the probe RP11-

372C15, which gave no signal in the inv(1), as better detailed below. 

FISH was performed to investigate the breakpoints of the inversion and to look for the 

possible involvement of the MPL gene, localized in 1p34.2. 

The proximal breakpoint was inside the band 1p12 because the results were the following: the 

signal of the probe RP11-206H22 (1p11.2) was at the normal position, as was the one of the 

probe RP11-125P23 (1p12), which appeared smaller compared to the normal 1 (Figure 5A), 

whereas the signal of the probe RP11-46G23 (1p12) was moved towards the telomere (Figure 

5B). The distal breakpoint was between bands 1p36.23 and 1p36.32, as the signal of the 

probe RP11-467K11 (1p36.32) remained in the expected localization, whereas the one of the 

probe RP11-690E2 (1p36.23) was displaced towards the centromere (Figure 5C). The probe 

RP11-372C15 (1p36.31), in the region of the distal breakpoint failed to show any signal in 

the inv(1) (Figure 5D). Among the results listed, two findings were unexpected: the smaller 

signal of the probe RP11-125P23 (1p12), and the lack of the sequence recognized by the 

probe RP11-372C15 (1p36.31). The possible involvement of the MPL gene was studied by 

FISH with two flanking probes, (RP11-113C10 and RP11-90B12), that demonstrated that the 

gene was not disrupted, in a position closer to the centromere than normal (Figure 6A). 



Figure 5 Mitosis cut-outs with FISH results of patient 3. A: the arrow indicates the signal 

of probe RP11-125P23 (red), at the normal localization, but smaller than the one on the 

normal 1; the red signal on the long arms, both on the normal 1 and on the inv(1), is due do 

cross-hybridization, and the green signal is the one of probe RP11-90B12, flanking the MPL 

gene, used as internal control and displaced towards the centromere on the inv(1); B: the 

arrow indicates the signal of probe RP11-46G23 (red), moved towards the telomere on the 

inv(1); C: the arrow indicates the signal of probe RP11-690E2 (green), moved towards the 

centromere on the inv(1); D: the arrow indicates the inv(1) lacking the signal of probe RP11-

372C15 (green, on the normal 1); the red signal is the one of probe RP11-113C10, flanking 

the MPL gene, used as internal control and displaced towards the centromere on the inv(1) 

Figure 6 Patient 3: FISH for MPL gene and a-CGH results. Probes flanking the MPL gene 

indicate its localization on the inverted chromosome 1, at the right (A); a-CGH profile of the 

short arms of chromosome 1 shows the two deleted regions (B) 

The a-CGH results explained the unexpected FISH findings, showing two deleted regions: a 

segment of 1.65 Mb in 1p36.31 (5 390 817 – 7 024 313), and one of 350 Kb in 1p12 (120 152 

971 – 120 495 484) (Figure 6B). The relative expression of MPL was repeatedly evaluated on 

BM sampled in April 2008, March 2009, October 2009, February 2010, and June 2010, and it 

was always strongly reduced in comparison to controls (Figure 7). 

Figure 7 Patient 3: relative expression of MPL in BM. BM sampled at five different dates 

(light grey columns 1–5), compared to five controls subjects (dark grey column 6: mean 

value ± standard deviation) 

Discussion 

The RUNX1 gene is involved in several different and frequently recurring translocations with 

various partner genes in leukaemia, and point mutations or deletions of this gene are relevant 

as well in the pathogenesis of different types of MDS and leukaemia subtypes [6-9]. 

Germline heterozygous mutations of RUNX1 cause the autosomal dominant disease “familial 

platelet disorder with propensity to AML” (FPD/AML) (OMIM #601399). Therefore, it is not 

surprising that RUNX1 haploinsufficiency due to constitutional chromosome deletions may 

cause a clinical phenotype which includes thrombocytopenia besides intellectual disability 

and other symptoms [10]. Only one case is reported in the literature with a constitutional 

RUNX1 deletion leading to non-syndromic thrombocytopenia with MDS [11]. Patients 1 and 

2 reported here demonstrate that thrombocytopenia or BM hypoplasia with consequent SAA 

may in fact be due to structural anomalies of chromosome 21 involving RUNX1 which are 

not deletions, but complex rearrangements which may also be acquired instead of 

constitutional. 

In detail, the chromosome anomaly in patient 1 was acquired and clonal in BM as shown by 

chromosome analyses and FISH on interphase nuclei. The fact that the der(21) was already 

present at the onset of the SAA provides support for its relevance in the disease aetiology. 

Altogether, our results demonstrate that the der(21) implies a deletion of most of the RUNX1 

gene, besides the inverted duplication of a more distal 10.332 Mb region (Figures 1A-2B): 

the expression of RUNX1 is consequently reduced (Figure 3) and causes defective 

maturation/proliferation of haematopoietic cells and SAA, what does not exclude the possible 

action also of other concomitant factors. During the disease course the abnormal clone varied 

in size within a range from 5% to 50%, as shown from chromosome and FISH analyses, 



without any specific clinico-haematological variation. RUNX1 expression in BM varied in 

parallel with the different size of the clone with the der(21) (Figure 3). Since November 2006 

to November 2008, this abnormal clone decreased in size (to 9%-5%) at the same time of the 

appearance of a new independent clone with the int del(13)(q12-13q21) which, on the 

contrary, increased progressively in size (5%-32%). Worthy of note, similar deletions of 

chromosome 13 are recurrent in myeloproliferative disorders, in particular in polycythaemia 

vera and primary myelofibrosis, but also in MDS and AML [12,13]: no morphological signs 

of overt MDS, however, was ever noticed in our patient 1. 

In patient 2 the complex rearrangement of chromosome 21 led to three regions of imbalance, 

two duplications and one deletion, besides the benign CNV inherited from the father. The 

RUNX1 gene was disrupted by the rearrangement, and a tiny segment including exon 5 was 

duplicated. During the diagnostic procedures, a mutation analysis of RUNX1 had been 

performed, but failed to reveal any change, obviously because no mutation was present in 

exon sequences. So, in this patient the disruption of RUNX1 led to decreased expression 

(Figure 4) and to thrombocytopenia. Being the rearrangement constitutional, we searched 

accurately for possible clinical findings, other than haematological, which might be related to 

the imbalances: when she was 8-year-old, height and weight were between the 25
th

 and the 

50
th

 centile, there was no developmental delay neither mental retardation, and none of the 

dysmorphic/malformative signs described in cases of 21q22 overlapping deletions [14], or 

any other relevant symptoms, were present. 

The definite diagnosis of patient 3 is CAMT. CAMT is an autosomal recessive disorder 

characterized by absent or reduced number of Mks in the BM since birth, extremely elevated 

serum levels of TPO, and very low platelet count that in some cases increases transiently 

during the first year of life [15]. Prognosis of CAMT patients is poor, because all of them 

develop in childhood a tri-linear marrow aplasia that is always fatal when left untreated. In 

our patient, pancytopenia, severely reduced BM cellularity, increased TPO levels and reduced 

platelet expression of TPO receptor, suggested a diagnosis of CAMT. However, homozygous 

or compound heterozygous mutations of the MPL gene, coding for the TPO receptor, that are 

responsible for CAMT [15], were not identified: nevertheless, expression analysis showed a 

very low level of MPL transcript (Figure 7). Moreover, polymorphism analysis showed that 

the patient had inherited from the parents the same alleles of his healthy sister. 

The locus MPL is on the short arms of chromosome 1, in band 34.2, and the BM clonal 

structural anomaly just of the short arms of chromosome 1 may hardly be considered as 

fortuitous. FISH with probes flanking MPL and a-CGH results excluded the disruption of the 

MPL gene (Figure 6). 

We postulate the following pathogenetic mechanism for CAMT in our patient. The 

paracentric inversions are usually considered balanced anomalies, but it has been shown that 

a-CGH applied to search for constitutional anomalies is able to detect a number of 

imbalances undetected with conventional cytogenetic methods, as was the case, e. g., of 10% 

of 13,926 patients with mental disability and apparently normal karyotype reviewed by Sagoo 

et al., 2009 [16]. In patients with apparently balanced constitutional structural 

rearrangements, it has been demonstrated that many cryptic deletions may be found by a-

CGH, more frequently at the breakpoint, with consequent phenotypic abnormalities [17]. So, 

the finding of two cryptic deletions at the breakpoints of the inversion of our patient is not too 

surprising: it is conceivable that this kind of unexpected imbalances may be found in acquired 

anomalies as well, and that position effects may derive from these cryptic imbalances. A 

well-known example of these cryptic rearrangements in an acquired apparently balanced 



translocation, regards chronic myeloid leukaemia with the Ph chromosome by translocation 

t(9;22)(q34;q11), in which deletions in regions flanking the translocation breakpoints are 

frequent, and imply a poor outcome [18]. In constitutional anomalies, firm evidence is 

available of the deregulation of transcripts due to the dissociation from long-range regulatory 

elements, phenomenon usually called position effect: structural anomalies were shown to be 

able to act on specific genes which may be tens of megabases apart from the breakpoints 

identified [19,20]. The a-CGH results in patient 3 showed a distance of about 36.5 Mb from 

the MPL gene to the telomeric breakpoint of the inversion and of about 76.5 Mb the 

centromeric one. The evidences from the literature on constitutional rearrangements concern 

position effects acting even at distance, but always on the chromosome where the breakage 

has took place, in cis, not on its homologue, but in mammals long-range DNA interactions 

were demonstrated acting both in cis and in trans, and causing variable gene expression level 

[21]. So, we postulate that in patient 3 the primary event causing the disease was the acquired 

clonal paracentric inversion, with the loss of the two regions near the breakpoints, and that 

some sequences in the lacking segments impaired the function of the MPL gene by position 

effect, both on the inv(1) and on the normal 1, thus leading to highly reduced expression and 

to acquired CAMT. 

Conclusions 

The three cases here reported lead to the following conclusions as to the role of chromosome 

changes in the pathogenesis of peripheral cytopenias and BM hypoplastic conditions: 1) the 

presence of an acquired clonal anomaly in BM does not suggest per se MDS in patients with 

inconclusive morphologic features: a subgroup of BM hypoplastic disorders, with uni- or 

multi-lineage effects, is directly due to a chromosome structural anomaly in BM which 

causes a specific genic effect. This pathway might be rather frequent: we have on record at 

least another case of thrombocytopenia which is due to a similar mechanism, an adult patient 

with an acquired complex chromosome rearrangement in BM implying deletion of long arms 

of chromosome 11 with loss of the FLI1 gene, and causing a thrombocytopenia of the Paris-

Trousseau type [22]. 2) Structural anomalies of chromosome 21 may impair RUNX1 

expression by deletion or simple disruption of the gene, as in patients 1 and 2, and they may 

be either acquired or constitutional. 3) The chromosome anomaly may act without deletion or 

disruption of the gene, but by impairing the gene expression, as is the case of MPL in our 

patient 3. 

The clinical “take-home message” of our report is that comprehensive cytogenetic 

investigations, if possible including a-CGH, should always be performed for the diagnostic 

evaluation of patients with BM aplasia/hypoplasia and peripheral cytopenias: in this regard, it 

is worth noting that the reduced RUNX1 expression in the abnormal BM cells of patients 1 

and 2 is strictly comparable to that of patients with FPD/AML, in whom a 20-50% risk of 

MDS/AML is expected [23]. 

Methods 

Chromosome analyses were performed in the three patients with routine methods and QFQ-

banding technique on BM direct preparations and 24-48
h
 cultures, on PB unstimulated and 

PHA-stimulated cultures, and, in patients 2 and 3, also on fibroblasts cultured from a skin 

biopsy. In patient 2, also NOR-staining technique was applied. 



FISH on metaphases, and on interphase nuclei was done by standard procedures with 

different probes to define the chromosome anomalies, and to monitor the abnormal clones. 

All the probes used for each patient in the FISH assays are listed in Table 1. 

The a-CGH was performed with the 244 K genome-wide system (Agilent Technologies Inc., 

Santa Clara, CA, USA), according to the manufacturer’s instruction on DNA from BM 

sampled in 2007 of patient 1, on DNA from PB of patient 2 and her parents, and on DNA 

from BM sampled in November 2008 of patient 3. 

The DNA was extracted using the Qiagen Blood and Tissue kit (QIAGEN GmbH, Hilden, 

Germany), and competitor DNA was purchased from Promega (Promega Corporation, 

Madison, WI, USA). Slides were scanned using Agilent’s microarray scanner G2565CA and 

microarray images were analysed using Agilent’s Feature Extraction 10.7.3.1 software, and 

by Agilent’s Genomic Workbench software (5.0.14). All map positions in the results refer to 

the genome assembly hg18. 

In patients 1 and 2 the relative expression of the RUNX1 gene was evaluated on RNA from 

total BM using Applied Biosystems ABI 7000 real-time thermocycler (Life Technologies 

Corporation, Carlsbad, California, USA), and the results were compared with RNA from BM 

of 4 age-matched healthy control subjects who donated haematopoietic cells for 

transplantation of a relative. In patient 1 this assay was performed twice, after two and four 

years from onset (2006, 2008), with Applied Biosystems Taqman assay # Hs_00231079_m1 

for RUNX1, and with endogenous controls which were # Hs_99999903_m1, Actin beta gene 

(ACTB), in the first assay, and # Hs_00824723_m1, Ubiquitin C (UBC) in the second one. 

Patient 2 was examined with the same technique with Applied Biosystems Taqman assay # 

Hs_00231079_m1 for RUNX1, and # Hs_00824723_m1, UBC, as endogenous control. 

In patient 3, the relative expression in BM of the MPL gene was repeatedly evaluated on 

RNA from total BM, sampled at five different dates from April 2008 to June 2010, using the 

same thermocycler as above, with Applied Biosystems Taqman assay # Hs_00180489_m1 

for MPL, and the housekeeping gene HPRT1, Taqman assay # Hs_01003267_m1, as 

normalizer: the results were compared with RNA from BM of 6 age-matched healthy control 

subjects. 

Informed consent to this study was obtained according to the principles of the Declaration of 

Helsinki from patients’ parents, and healthy controls; the experimental work was approved by 
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Competing interests 

The authors declare that they have no competing interests. 

Authors’ contributions 

CM, BP, LM and GMo contributed equally to chromosome analyses and FISH. CM and RV 

performed array-CGH analyses and mutational analysis of patients 1 and 2. GMe, GL, MEB, 

LV, ADC-M, MZ and FLo were responsible for the clinical management of the patients and 

of the analysis of clinico-haematological data. SF performed molecular analysis of patient 3. 

FL, FLo, FP and EM conceived and coordinated the study, and drafted the manuscript. All 

authors have read and approved the final manuscript. 



Acknowledgements 

The authors would like to thank the support of Fondazione Banca del Monte di Lombardia 

and of Associazione Italiana Sindrome di Shwachman (AISS). 

References 

1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le 

Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD: The 2008 revision of the 

World Health Organization (WHO) classification of myeloid neoplasms and acute 

leukemia: rationale and important changes. Blood 2009, 30:937–951. 

2. Maserati E, Panarello C, Morerio C, Valli R, Pressato B, Patitucci F, Tassano E, Di 

Cesare-Merlone A, Cugno C, Balduini CL, Lo Curto F, Dufour C, Locatelli F, Pasquali F: 

Clonal chromosome anomalies and propensity to myeloid malignancies in Congenital 

Amegakaryocytic Thrombocytopenia (OMIM # 604498). Haematologica 2008, 93:1271–

1273. 

3. Noris P, Perrotta S, Seri M, Pecci A, Gnan C, Loffredo G, Pujol-Moix N, Zecca M, 

Scognamiglio F, De Rocco D, Punzo F, Melazzini F, Scianguetta S, Casale M, Marconi C, 

Pippucci T, Amendola G, Notarangelo LD, Klersy C, Civaschi E, Balduini CL, Savoia A: 

Mutations in ANKRD26 are responsible for a frequent form of inherited 

thrombocytopenia: analysis of 78 patients from 21 families. Blood 2011, 117:6673–6680. 

4. Valli R, Marletta C, Pressato B, Montalbano G, Lo Curto F, Pasquali F, Maserati E: 

Comparative genomic hybridization on microarray (a-CGH) in constitutional and 

acquired mosaicism may detect as low as 8% abnormal cells. Mol Cytogenet 2011, 4:13. 

5. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: 

Detection of large-scale variation in the human genome. Nat Genet 2004, 36:949–951. 

6. Osato M: Point mutations in the RUNX1/AML1 gene: another actor in RUNX1 

leukemia. Oncogene 2004, 23:4284–4296. 

7. Thiel A, Beier M, Ingenhag D, Servan K, Hein M, Moeller V, Betz B, Hildebrandt B, 

Evers C, Germing U, Royer-Pokora B: Comprehensive array CGH of normal karyotype 

myelodysplastic syndromes reveals hidden recurrent and individual genomic copy 

number alterations with prognostic relevance. Leukemia 2011, 25:387–399. 

8. Bajaj R, Xu F, Xiang B, Wilcox K, DiAdamo AJ, Kumar R, Pietraszkiewicz A, Halene S, 

Li P: Evidence-based genomic diagnosis characterized chromosomal and cryptic 

imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid 

leukemia. Mol Cytogenet 2011, 4:3. 

9. Garcia DRN, Bhatt S, Manvelyan M, de Souza MT, Binato R, Aguiar TF, Abdelhay E, 

Silva MLM: An unusual T-cell childhood acute lymphoblastic leukemia harbouring a 

yet unreported near-tetraploid karyotype. Mol Cytogenet 2011, 4:20. 

10. Liew E, Owen C: Familial myelodysplastic syndrome: a review of the literature. 

Haematologica 2011, 96:1536–1542. 



11. van der Crabben S, van Binsbergen E, Ausems M, Poot M, Bierings M, Buijs A: 

Constitutional RUNX1 deletion presenting as non-syndromic thrombocytopenia with 

myelodysplasia: 21q22 ITSN1 as a candidate gene in mental retardation. Leuk Res 2010, 

34:e8–e12. 

12. Ma ESK, Wan TSK: del (13q). Atlas Genet Cytogenet Oncol Haematol March, 2004. 

URL:http://AtlasGeneticsOncology.org/Anomalies/del13qID1310.html. 

13. Garcia-Manero G, Yang AS, Jagasia M: Evaluating new treatment options for MDS. 

Clin Adv Hematol Oncol 2007, 5:1–9. 

14. Katzaki E, Morin G, Pollazzon M, Papa FT, Buoni S, Hayek J, Andrieux J, Lecerf L, 

Popovici C, Receveur A, Mathieu-Dramard M, Renieri A, Mari F, Philip N: Syndromic 

mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of 

three patients. Am J Med Genet A 2010, 152A:1711–1717. 

15. Ballmaier M, Germeshausen M: Advances in the understanding of congenital 

amegakaryocytic thrombocytopenia. Br J Haematol 2009, 146:3–16. 

16. Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins JPT, Burton H: Array 

CGH in patients with learning disability (mental retardation) and congenital anomalies: 

updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet 

Med 2009, 11:139–146. 

17. De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, Novara F, Vetro A, 

Rossi E, Maraschio P, Bonaglia MC, Anichini C, Ferrero GB, Silengo M, Fazzi E, Zatterale 

A, Fischetto R, Previderé C, Belli S, Turci A, Calabrese G, Bernardi F, Meneghelli E, Riegel 

M, Rocchi M, Guerneri S, Lalatta F, Zelante L, Romano C, Fichera M, et al: Cryptic 

deletions are a common finding in "balanced" reciprocal and complex chromosome 

rearrangements: a study of 59 patients. J Med Genet 2007, 44:750–762. 

18. Kolomietz E, Marrano P, Yee K, Thai B, Braude I, Kolomietz A, Chun K, Minkin S, 

Kamel-Reid S, Minden M, Squire JA: Quantitative PCR identifies a minimal deleted 

region of 120 kb extending from the Philadelphia chromosome ABL translocation 

breakpoint in chronic myeloid leukemia with poor outcome. Leukemia 2003, 17:1313–

1323. 

19. Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Praderwand S, Schütz F, Young JI, 

Lupski JR, Reymond A, Walz K: Phenotypic consequences of copy number variation: 

insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 

2010, 8:e1000543. 

20. Zanni G, Barresi S, Travaglini L, Bernardini L, Rizza T, Digilio MC, Mercuri E, 

Cianfarani S, Valeriani M, Ferraris A, Da Sacco L, Novelli A, Valente EM, Dallapiccola B, 

Bertini ES: FGF17, a gene involved in cerebellar development, is downregulated in a 

patient with Dandy-Walker malformation carrying a de novo 8p deletion. Neurogenetics 

2011, 12:241–245. 

21. Noordermeer D, de Wit E, Klous P, van de Werken H, Simonis M, Lopez-Jones M, 

Eussen B, de Klein A, Singer RH, de Laat W: Variegated gene expression caused by cell-

specific long-range DNA interactions. Nat Cell Biol 2011, 13:944–951. 



22. Noris P, Valli R, Pecci A, Marletta C, Invernizzi R, Mare L, Balduini CL, Maserati E: 

Clonal chromosome anomalies affecting Fli1 mimic inherited thrombocytopenia of the 

Paris-Trousseau type. Eur J Haematol 2012, doi:10.1111/j.1600-0609.2012.01833.x. 

23. Harada Y, Harada H: Molecular pathways mediating MDS/AML with focus on 

AML/RUNX1 point mutations. J Cell Physiol 2009, 220:16–20. 



Figure 1









Figure 5



Figure 6




	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

