244 research outputs found

    The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    Full text link
    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can be ruled out as valid explanations for this phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other formats -> Source" downloa

    A 3D Numerical Model for the Optimization of Running Tracks Performance

    Get PDF
    In previous works, a finite element model of the shock absorbing characteristics of athletics tracks was developed, able to give sufficiently reliable predictions from laboratory tests performed on suitable material samples. The model proved to be effective in discriminating the effects of geometry (i.e. thickness) and material properties (essentially the elastic characteristics) on force reduction, thus allowing a first optimization of the tracks in view of their approval by the International Association of Athletics Federations (IAAF). This simplified 2D model neglected the real track structure, considering it as a single layer of material having homogenized properties. In the present study, a new 3D model was developed to accurately describe the structure of multi-layered tracks, with properties and geometrical construction (e.g. solid or honeycomb) differing from one layer to another. Several tracks having different combinations of top/bottom layers varying in both material formulation (i.e. chemical composition) and geometry were thus considered. Mechanical properties of the individual elements constituting the track were measured with small-scale laboratory tests, taking into account their strain-rate dependence. The 3D model allowed a complete representation of the loads acting on the track and it gave results which are in very good agreement with the experiments. This proves it to be a valuable tool for the purpose of optimizing the track in terms of material formulation as well as layer geometrical construction and arrangement: as an example, the effect of changing the cell size of the honeycomb pattern was investigated

    Staphylococcal cassette chromosome mec typing and meca sequencing in methicillin-resistant staphylococci from Algeria: A highly diversified element with new mutations in mecA

    Get PDF
    Genetic mechanisms of methicillin resistance are still relevant in staphylococci. The aims of this study are to assess the possible exchanges of staphylococcal cassette chromosome mec (SCCmec) among isolates of methicillin-resistant staphylococci (MRS) and to check for known or new mutations in mecA DNA. A total of 35 MRS non-repetitive isolates were recovered, including 20 Staphylococcus haemolyticus, 7 Staphylococcus aureus, 4 Staphylococcus sciuri, 2 Staphylococcus saprophyticus and 1 isolate each of Staphylococcus xylosus and Staphylococcus lentus. Only 16 of the 35 strains were assigned to known SCCmec types: 7 SCCmec VII, 6 SCCmec IV and 3 SCCmec III, with possible horizontal transfer of the SCCmec VII from methicillin-resistant S. haemolyticus to methicillin-susceptible S. aureus. mecA gene sequencing in ten selected isolates allowed description of nine punctual mutations, seven of which were reported for the first time. The most frequent mutation was G246E, identified in isolates of methicillin-resistant S. aureus, S. sciuri, S. saprophyticus and S. lentus. These results emphasized the high degree of genetic diversity of SCCmec element in MRS and describe new missense mutations in mecA, which might be important in understanding the evolution of methicillin and new b-lactam resistance

    The Transcriptome of SH-SY5Y at Single-Cell Resolution: A CITE-Seq Data Analysis Workflow

    Get PDF
    Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) is a recently established multimodal single cell analysis technique combining the immunophenotyping capabilities of antibody labeling and cell sorting with the resolution of single-cell RNA sequencing (scRNA-seq). By simply adding a 12-bp nucleotide barcode to antibodies (cell hashing), CITE-seq can be used to sequence antibody-bound tags alongside the cellular mRNA, thus reducing costs of scRNA-seq by performing it at the same time on multiple barcoded samples in a single run. Here, we illustrate an ideal CITE-seq data analysis workflow by characterizing the transcriptome of SH-SY5Y neuroblastoma cell line, a widely used model to study neuronal function and differentiation. We obtained transcriptomes from a total of 2879 single cells, measuring an average of 1600 genes/cell. Along with standard scRNA-seq data handling procedures, such as quality checks and cell filtering procedures, we performed exploratory analyses to identify most stable genes to be possibly used as reference housekeeping genes in qPCR experiments. We also illustrate how to use some popular R packages to investigate cell heterogeneity in scRNA-seq data, namely Seurat, Monocle, and slalom. Both the CITE-seq dataset and the code used to analyze it are freely shared and fully reusable for future research

    Descriptive Epidemiology of Nasal Carriage of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Among Patients Admitted to Two Healthcare Facilities in Algeria

    Get PDF
    Aim: To evaluate nasal carriage rate and variables associated with Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted in two healthcare facilities. Results: S. aureus was isolated from 159 (26%) of the enrolled patients. Methicillin-susceptible S. aureus was isolated from 150 (24.5%) patients, and MRSA was isolated from 9 (1.5%). Cancer and previous hospitalization were associated with a significantly higher frequency of nasal S. aureus carriage among the patients admitted to the general hospital and the nephrology department, respectively. MRSA isolates were heterogeneous with respect to their staphylococcal cassette chromosome mec element (SCCmec) type, sequence type (ST), and toxin genes (pvl and tst1) content. Four isolates were attributed with the ST80-MRSA-IV clone, which is known to be predominant in Algeria. Conclusions: This is the first assessment of S. aureus and MRSA nasal carriage and associated variables in Algeria. Our findings provide also a picture of the MRSA strains circulating in the community in this geographic area. They can be useful as a guide for implementing screening and control procedures against S. aureus/MRSA in the Algerian healthcare facilities

    Anti-oxidant potential and gap junction-mediated intercellular communication as early biological markers of mercuric chloride toxicity in MDCK cell line.

    Get PDF
    In this study, the early nephrotoxic potential of mercuric chloride (HgCl(2)) has been evaluated in vitro, by exposing a renal-derived cell system, the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, to the presence of increasing HgCl(2) concentrations (0.1-100 microM) for different periods of time (from 4 to 72 h). As possible biological markers of the tubular-specific toxicity of HgCl(2) in exposed-MDCK cultures we analysed: (i) critical biochemical parameters related to oxidative stress conditions and (ii) gap-junctional function (GJIC). HgCl(2) cytotoxicity was evaluated by cell-density assay. The biochemical analysis of the pro-oxidant properties of the mercuric ion (Hg(2+)) was performed by evaluating the effect of the metal salt on the antioxidant status of the MDCK cells. The cell glutathione (GSH) content and the activity of glutathione peroxidase (Gpx) and catalase (Cat), two enzymes engaged in the H(2)O(2) degradation, were quantified. HgCl(2) influence on MDCK GJIC was analysed by the microinjection/dye-transfer assay. HgCl(2)-induced morphological changes in MDCK cells were also taken into account. Our results, proving that subcytotoxic (0.1-10 microM) HgCl(2) concentrations affect either the antioxidant defences of MDCK cells or their GJIC, indicate these critical functions as suitable biological targets of early mercury-induced tubular cell injury

    Multimodality imaging of chronic tophaceous gout

    Get PDF
    The diagnosis of gout is usually based on clinical presentation and laboratory findings. Imaging plays a role in the assessment and grading of articular damage related to chronic, long-standing disease, which is characterized by granulomatous synovitis, tophi, and erosions. Multimodality imaging of chronic tophaceous gout may be useful in clinical practice for a variety of purposes, including assessment of disease-related anatomical changes and monitoring of articular and soft-tissue lesions over time, especially in response to urate-lowering therapy. Radiography remains the primary imaging technique. Ultrasonography may detect monosodium urate crystals on cartilage, is helpful to assess small joint effusion, to guide to joint aspiration, and to evaluate the volume of tophi. Computed tomography is considered to be more sensitive than plain radiography in the detection and evaluation of cortical bone erosions associated with tophi. MRI represents the only imaging modality which provides visualization of bone marrow oedema associated with erosions and may be useful to characterize and distinguish tophi from other soft tissue nodules

    Single-cell gene network analysis and transcriptional landscape of MYCN-amplified neuroblastoma cell lines

    Get PDF
    Neuroblastoma (NBL) is a pediatric cancer responsible for more than 15% of cancer deaths in children, with 800 new cases each year in the United States alone. Genomic amplification of the MYC oncogene family member MYCN characterizes a subset of high-risk pediatric neuroblastomas. Several cellular models have been implemented to study this disease over the years. Two of these, SK-N-BE-2-C (BE2C) and Kelly, are amongst the most used worldwide as models of MYCN-Amplified human NBL. Here, we provide a transcriptome-wide quantitative measurement of gene expression and transcriptional network activity in BE2C and Kelly cell lines at an unprecedented single-cell resolution. We obtained 1105 Kelly and 962 BE2C unsynchronized cells, with an average number of mapped reads/cell of roughly 38,000. The single-cell data recapitulate gene expression signatures previously generated from bulk RNA-Seq. We highlight low variance for commonly used housekeeping genes between different cells (ACTB, B2M and GAPDH), while showing higher than expected variance for metallothionein transcripts in Kelly cells. The high number of samples, despite the relatively low read coverage of single cells, allowed for robust pathway enrichment analysis and master regulator analysis (MRA), both of which highlight the more mesenchymal nature of BE2C cells as compared to Kelly cells, and the upregulation of TWIST1 and DNAJC1 transcriptional networks. We further defined master regulators at the single cell level and showed that MYCN is not constantly active or expressed within Kelly and BE2C cells, independently of cell cycle phase. The dataset, alongside a detailed and commented programming protocol to analyze it, is fully shared and reusable
    corecore