5 research outputs found

    Optical Characterization of AsxTe100−x Films Grown by Plasma Deposition Based on the Advanced Optimizing Envelope Method

    No full text
    Three AsxTe100−x films with different x and dissimilar average thickness d ¯ are characterized mainly from one interference transmittance spectrum T(λ = 300 to 3000 nm) of such film on a substrate based on the advanced optimizing envelope method (AOEM). A simple dual transformation of T(λ) is proposed and used for increasing the accuracy of computation of its envelopes T+(λ) and T−(λ) accounting for the significant glass substrate absorption especially for λ > 2500 nm. The refractive index n(λ) of As40Te60 and As98Te2 films is determined with a relative error <0.30%. As far as we know, the As80Te20 film is the only one with anomalous dispersion and the thickest, with estimated d ¯ = 1.1446 nm, ever characterized by an envelope method. It is also shown and explained why the extinction coefficient k(λ) of any of the three AsxTe100−x films is computed more accurately from the quantity Ti(λ) = [T+(λ)T−(λ)]0.5 compared to its commonly employed computation from T+(λ). The obtained results strengthen our conviction that the AOEM has a capacity for providing most accurate optical characterization of almost every dielectric or semiconductor film with d ¯ > 300 nm on a substrate, compared to all the other methods for characterization of such films only from T(λ)

    Removal of Non-Steroidal Anti-Inflammatory Drugs from Drinking Water Sources by GO-SWCNT Buckypapers

    No full text
    Pharmaceutical products such as antibiotics, analgesics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) are new emerging pollutants, often present in wastewater, potentially able to contaminate drinking water resources. Adsorption is considered the cheapest and most effective technique for the removal of pollutants from water, and, recently, membranes obtained by wet filtration method of SWCNT aqueous solutions (SWCNT buckypapers, SWCNT BPs) have been proposed as self-standing porous adsorbents. In this paper, the ability of graphene oxide/single-walled carbon nanotube composite membranes (GO-SWCNT BPs) to remove some important NSAIDs, namely Diclofenac, Ketoprofen, and Naproxen, was investigated at different pH conditions (pH 4, 6, and 8), graphene oxide amount (0, 20, 40, 60, and 75 wt.%), and initial NSAIDs concentration (1, 10, and 50 ppm). For the same experimental conditions, the adsorption capacities were found to strongly depend on the graphene oxide content. The best results were obtained for 75 wt.% graphene oxide with an adsorption capacity of 118 ± 2 mg g−1 for Diclofenac, 116 ± 2 mg g−1 for Ketoprofen, and 126 ± 3 mg g−1 for Naproxen at pH 4. Overall, the reported data suggest that GO-SWCNT BPs can represent a promising tool for a cheap and fast removal of NSAIDs from drinking water resources, with easy recovery and reusability features
    corecore