12 research outputs found

    EXPERIMENTAL RESEARCH INTO MARBLE CUTTING BY ABRASIVE WATER JET

    Get PDF
    The article presents research on the erosion of the metamorphic rock - marble by the Abrasive Water Jet (AWJ). The fragmentation of abrasive grains during the erosion process is demonstrated. The effect of the cutting process's most important parameters as traverse speed, nozzle ID, and abrasive mass flow rate, on the maximum cutting depth, is shown. To create a mathematical-statistic model of the erosion process, the methodology of the response surface (RSM) was used for modeling. The polynomial equation of the second degree is chosen for developing the regression model. Studies have shown the optimal parameters of the process, to reach the highest depth of the cut. Additionally, the erosion wear of a focusing tube under different process conditions is presented

    PROCESS OPTIMIZATION BY APPLYING THE RESPONSE SURFACE METHODOLOGY (RSM) TO THE ABRASIVE SUSPENSION WATER JET CUTTING OF PHENOLIC COMPOSITES

    Get PDF
    The paper introduces the study on the cutting of the industrial composite phenolic resin, based on the thermoset materials reinforced with cotton cloth by the Abrasive Water Suspension Jet (AWSJ). The size reduction of abrasive grains during the formation of the jet and the erosion phenomenon are shown. The results of the machining process's critical factors as nozzle length, nozzle diameter, and abrasive mass flow rate on the maximal cutting depth, are indicated. To build a model of the process, the method of the response surface (RSM) was applied. The second-degree multinomial equation is selected for creating the cutting model. The research indicates the optimal control factors of the process, to achieve the best cutting depth performance

    IT services management standards

    No full text
    Usługi informatyczne stanowią powiązane ze sobą komponenty, które współpracują, aby osiągnąć założony cel biznesowy organizacji. Standardy zarządzania usługami informatycznymi to zbiory dobrych praktyk służących podnoszeniu jakości usług informatycznych. Stanowią one istotny element przekształcania potrzeb i wymagań biznesowych organizacji na konkretne usługi informatyczne.IT Services are interlinked components that work together to achieve this objective of the organization. IT Service Management Standards are a set of best practices for improving the quality of IT services. Standards are an important element of transforming the needs and business requirements for IT services

    Application of RSM Method for Optimization of Geraniol Transformation Process in the Presence of Garnet

    No full text
    This paper presents the results of tests obtained for the transformation of geraniol in the presence of garnet as a catalyst by the response surface method (RSM). The method analyzed the influence of the following parameters: a temperature of 50–150 °C, a catalyst concentration (garnet) of 1.0–10.0 wt% and a reaction time of 0.25–24 h. Response functions included the conversion of geraniol (GA), selectivity for conversion to neral (NE) and selectivity for conversion to citronellol (CL). In addition, the influence of all control parameters on each of the response parameters is presented in the form of second-order polynomials. The optimal parameters of the geraniol transformation process were a temperature of 55 °C, a catalyst concentration of 5 wt% and a reaction time of 2 h, for which high values of the GA conversion function and the selectivity of conversion to NE and CL were obtained. For the GA conversion, the optimum was obtained at 94 mol% at 60 °C, a catalyst concentration of 5.0 wt% and a reaction time of 2 h. For NE selectivity, the optimum value was reached at 49 mol% at 60 °C, a catalyst concentration equal to 2.5 (5.0) wt% mole and a reaction time of almost 2 h. For CL selectivity, the optimum value of 49 mol% was obtained for control factors: a temperature equal to 20 °C, a catalyst concentration equal to 5.0 wt% and a response time equal to 2 h. The optimal set of control factors for all power factors is characterized by a temperature of 55 °C, a catalyst concentration of 5 wt% and a reaction time of 2 h

    Modeling and Optimization of Geraniol ((2E)-3,7-Dimethyl-2,6-Octadiene-l-ol) Transformation Process Using Response Surface Methodology (RSM)

    No full text
    This paper presents the modeling of the geraniol transformation process using response surface methodology (RSM). It uses a combination of both statistical and mathematical modeling methods to study the relationships occurring between several explanatory variables and one or more response variables. Interactions occurring between process variables are studied using statistical techniques. In this paper, the influence of the most important process parameters, such as temperature 20–110 °C, catalyst concentration (mironecuton) 1.0–5.0 (wt.%), and reaction time 0.25–2 (h), is presented. The response functions were the conversion of geraniol (GA), the selectivity of conversion to thumbergol (TH), and the selectivity of conversion to 6,11-dimethyl-2,6,10-dodecatriene-1-ol (DMC). In addition, the effects of all control parameters on each of the response parameters were presented in the form of second-order polynomials. Attempts were made to identify process conditions that would allow high values of the process function

    Application of RSM Method for Optimization of Geraniol Transformation Process in the Presence of Garnet

    No full text
    This paper presents the results of tests obtained for the transformation of geraniol in the presence of garnet as a catalyst by the response surface method (RSM). The method analyzed the influence of the following parameters: a temperature of 50–150 °C, a catalyst concentration (garnet) of 1.0–10.0 wt% and a reaction time of 0.25–24 h. Response functions included the conversion of geraniol (GA), selectivity for conversion to neral (NE) and selectivity for conversion to citronellol (CL). In addition, the influence of all control parameters on each of the response parameters is presented in the form of second-order polynomials. The optimal parameters of the geraniol transformation process were a temperature of 55 °C, a catalyst concentration of 5 wt% and a reaction time of 2 h, for which high values of the GA conversion function and the selectivity of conversion to NE and CL were obtained. For the GA conversion, the optimum was obtained at 94 mol% at 60 °C, a catalyst concentration of 5.0 wt% and a reaction time of 2 h. For NE selectivity, the optimum value was reached at 49 mol% at 60 °C, a catalyst concentration equal to 2.5 (5.0) wt% mole and a reaction time of almost 2 h. For CL selectivity, the optimum value of 49 mol% was obtained for control factors: a temperature equal to 20 °C, a catalyst concentration equal to 5.0 wt% and a response time equal to 2 h. The optimal set of control factors for all power factors is characterized by a temperature of 55 °C, a catalyst concentration of 5 wt% and a reaction time of 2 h

    Framework for multi-criteria assessment of classification models for the purposes of credit scoring

    No full text
    Abstract The main dilemma in the case of classification tasks is to find—from among many combinations of methods, techniques and values of their parameters—such a structure of the classifier model that could achieve the best accuracy and efficiency. The aim of the article is to develop and practically verify a framework for multi-criteria evaluation of classification models for the purposes of credit scoring. The framework is based on the Multi-Criteria Decision Making (MCDM) method called PROSA (PROMETHEE for Sustainability Analysis), which brought added value to the modelling process, allowing the assessment of classifiers to include the consistency of the results obtained on the training set and the validation set, and the consistency of the classification results obtained for the data acquired in different time periods. The study considered two aggregation scenarios of TSC (Time periods, Sub-criteria, Criteria) and SCT (Sub-criteria, Criteria, Time periods), in which very similar results were obtained for the evaluation of classification models. The leading positions in the ranking were taken by borrower classification models using logistic regression and a small number of predictive variables. The obtained rankings were compared to the assessments of the expert team, which turned out to be very similar

    Efficiency of Tool Steel Cutting by Water Jet with Recycled Abrasive Materials

    No full text
    High-pressure water jet machining is characterized by wide possibilities of cutting diverse materials together with multi-layer materials with dissimilar properties, accurate cutting complex profiles, as well as conducting them in uncommon conditions, especially in cases of thick materials. An additional advantage of water jet technology is its environmental friendliness. This paper presents tests of the cutting performance of tool steel with the use of an abrasive water jet (AWJ). The state-of-the-art has shown insufficient scientific evidence in AWJ tool steels cutting using recycled abrasive materials. Therefore, the main motivation for this paper was to carry out research from an environment aspect. The reuse of abrasives and the use of recycled materials have immense potential to reduce processing costs while remaining environmentally friendly. The RSM method was used for modeling and optimization. A response surface design (RSM) is a package of an advanced design-of-experiment (DOE) approaches that support better understanding and optimize response, exploring the relationships between several explanatory variables and one or more response variables. Based on this research, feed rate is the key factor influencing the depth of cut, while the water nozzle diameter has a secondary effect, and the concentration of abrasive has the least influence on the depth of cut. High level of variance (the percentage of variability in the reaction that is interpreted by the formula) confirms that the models fit well to the investigational data

    Optimizacija rezanja z abrazivnim vodnim curkom po metodi CODAS ob upoštevanju medsebojno odvisnih parametrov obdelave

    Full text link
    The paper shows performance optimization effects of steel machining by abrasive water jet (AWJ). An innovative combinative distance-based assessment method (CODAS) is implemented for the optimization of cutting parameters like pump pressure, feed rate, and abrasive flow rate over cutting depth, and cut kerf surface roughness. The CODAS algorithm is among those based on measuring the distance between a scenario (in this case processing parameters in terms of performance and quality indicators) - and a certain benchmark. A benchmark is a specific hypothetical set of processing parameters devised or determined from available data. To determine the best set of process control parameters, a CODAS approach was performed with some weighting determinations. To set the initial parameters of the weights, it was proposed to calculate based on entropy weight method (EWM), that measures output value dispersion in cutting process. This technique simplifies multiple compound responses by preserving a single response

    GNSS and LNSS Positioning of Unmanned Transport Systems: The Brief Classification of Terrorist Attacks on USVs and UUVs

    No full text
    As the demand for precision positioning grows around the world and spreads across various industries, initiatives are being taken to increasingly protect Global Navigation Satellite System (GNSS) receivers from intruders of all kinds, from unintentional industrial interference to advanced GNSS spoofing systems. The timing and cost of these forthcoming satellite navigation safety efforts are difficult to decipher due to the large number of new signals and constellations being deployed. However, it is safe to say that the newly designed anti-jamming and anti-spoofing GNSS systems open up new opportunities for innovative technologies. The false acoustic signal delay is equal to the sum of the spoofer receiving antenna delay, processing delay, and propagation delay from the spoofer to the victim. The victim finds the same location as the spoofer’s receiving antenna, and receivers located in different locations will have the same XYZ. The article presents classifications of terrorist attacks of this type
    corecore