52 research outputs found

    Montage Matters:The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    Get PDF
    BACKGROUND: Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification.HYPOTHESIS: We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode.METHODS: We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 μA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings.RESULTS: Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor.CONCLUSION: The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols.</p

    Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation during Beta tACS

    Get PDF
    The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits

    Montage Matters:The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    Get PDF
    BACKGROUND: Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification.HYPOTHESIS: We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode.METHODS: We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 μA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings.RESULTS: Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor.CONCLUSION: The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols.</p

    Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study

    Get PDF
    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention.SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool

    Montage Matters: The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    Get PDF
    BACKGROUND: Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification. HYPOTHESIS: We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode. METHODS: We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 μA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings. RESULTS: Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor. CONCLUSION: The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols

    A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing and postural instability are disabling features of Parkinsonian disorders, treatable with pedunculopontine nucleus stimulation. Both features are considered deficits of proximal and axial musculature, innervated predominantly by reticulospinal pathways and tend to manifest when gait and posture require adjustment. Adjustments to gait and posture are amenable to pre-preparation and rapid triggered release. Experimentally, such accelerated release can be elicited by loud auditory stimuli—a phenomenon known as ‘StartReact’. We observed StartReact in healthy and Parkinsonian controls. However, StartReact was absent in Parkinsonian patients with severe gait freezing and postural instability. Pedunculopontine nucleus stimulation restored StartReact proximally and proximal reaction times to loud stimuli correlated with gait and postural disturbance. These findings suggest a relative block to triggered, pre-prepared movement in gait freezing and postural instability, relieved by pedunculopontine nucleus stimulation

    Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism

    Get PDF
    The pedunculopontine nucleus, a component of the reticular formation, is topographically organized in animal models and implicated in locomotor control. In Parkinson's disease, pedunculopontine nucleus stimulation is an emerging treatment for gait freezing. Local field potentials recorded from pedunculopontine nucleus electrodes in such patients have demonstrated oscillations in the alpha and beta frequency bands, reactive to self-paced movement. Whether these oscillations are topographically organized or relevant to locomotion is unknown. Here, we recorded local field potentials from the pedunculopontine nucleus in parkinsonian patients during rest and unconstrained walking. Relative gait speed was assessed with trunk accelerometry. Peaks of alpha power were present at rest and during gait, when they correlated with gait speed. Gait freezing was associated with attenuation of alpha activity. Beta peaks were less consistently observed across rest and gait, and did not correlate with gait speed. Alpha power was maximal in the caudal pedunculopontine nucleus region and beta power was maximal rostrally. These results indicate a topographic distribution of neuronal activity in the pedunculopontine nucleus region and concur with animal data suggesting that the caudal subregion has particular relevance to gait. Alpha synchronization, proposed to suppress ‘task irrelevant’ distraction, has previously been demonstrated to correlate with performance of cognitive tasks. Here, we demonstrate a correlation between alpha oscillations and improved gait performance. The results raise the possibility that stimulation of caudal and rostral pedunculopontine nucleus regions may differ in their clinical effects

    Subthalamic stimulation modulates context-dependent effects of beta bursts during fine motor control.

    Get PDF
    Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation

    Stimulating at the right time: phase-specific deep brain stimulation.

    Get PDF
    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects

    Electrophysiological differences between upper and lower limb movements in the human subthalamic nucleus

    Get PDF
    OBJECTIVE Functional processes in the brain are segregated in both the spatial and spectral domain. Motivated by findings reported at the cortical level in healthy participants we test the hypothesis in the basal ganglia of Parkinson's disease patients that lower frequency beta band activity relates to motor circuits associated with the upper limb and higher beta frequencies with lower limb movements. METHODS We recorded local field potentials (LFPs) from the subthalamic nucleus using segmented "directional" DBS leads, during which patients performed repetitive upper and lower limb movements. Movement-related spectral changes in the beta and gamma frequency-ranges and their spatial distributions were compared between limbs. RESULTS We found that the beta desynchronization during leg movements is characterised by a strikingly greater involvement of higher beta frequencies (24-31 Hz), regardless of whether this was contralateral or ipsilateral to the limb moved. The spatial distribution of limb-specific movement-related changes was evident at higher gamma frequencies. CONCLUSION Limb processing in the basal ganglia is differentially organised in the spectral and spatial domain and can be captured by directional DBS leads. SIGNIFICANCE These findings may help to refine the use of the subthalamic LFPs as a control signal for adaptive DBS and neuroprosthetic devices
    corecore