58 research outputs found

    The concept of energy security: Beyond the four As

    Get PDF
    AbstractEnergy security studies have expanded from their classic beginnings following the 1970s oil crises to encompass various energy sectors and increasingly diverse issues. This viewpoint contributes to the re-examination of the meaning of energy security that has accompanied this expansion. Our starting point is that energy security is an instance of security in general and thus any concept of it should address three questions: “Security for whom?”, “Security for which values?” and “Security from what threats?” We examine an influential approach – the ‘four As of energy security’ (availability, accessibility, affordability, and acceptability) and related literature of energy security – to show it does not address these questions. We subsequently summarize recent insights which propose a different concept of energy security as ‘low vulnerability of vital energy systems’. This approach opens the road for detailed exploration of vulnerabilities as a combination of exposure to risks and resilience and of the links between vital energy systems and critical social functions. The examination of energy security framed by this concept involves several scientific disciplines and provides a useful platform for scholarly analysis and policy learning

    Energy security assessment framework and three case-studies

    Get PDF
    This chapter provides a novel framework for assessing energy security and illustrates its application by the Global Energy Assessment, the IEA Model for Short-term energy security and in several studies of long-term global energy security

    Failing the formative phase: The global diffusion of nuclear power is limited by national markets

    Get PDF
    Understanding the role of technology characteristics and the context in the diffusion of new energy technologies is important for assessing feasibility of climate mitigation. We examine the historical adoption of nuclear power as a case of a complex large scale energy technology. We conduct an event history analysis of grid connections of first sizable commercial nuclear power reactors in 79 countries between 1950 and 2018. We show that the introduction of nuclear power can largely be explained by contextual variables such as the proximity of a country to a major technology supplier (‘ease of diffusion’), the size of the economy, electricity demand growth, and energy import dependence (‘market attractiveness’). The lack of nuclear newcomers in the early 1990s can be explained by the lack of countries with high growth in electricity demand and sufficient capacities to build their first nuclear power plant, either on their own or with international help. We also find that nuclear accidents, the pursuit of nuclear weapons, and the advances made in competing technologies played only a minor role in nuclear technology failing to be established in more countries. Our analysis improves understanding of the feasibility of introducing contested and expensive technologies in a heterogenous world with motivations and capacities that differ across countries and by a patchwork of international relations. While countries with high state capacity or support from a major technology supplier are capable of introducing large-scale technologies quickly, technology diffusion to other regions might undergo significant delays due to lower motivations and capacities

    Zero carbon energy systems

    Get PDF

    Coal phase-out pledges follow peak coal: evidence from 60 years of growth and decline in coal power capacity worldwide

    Get PDF
    Transitioning to net-zero carbon emissions requires phasing-out unabated coal power; however, recently it has only been declining in some countries, while it stagnated or even increased in others. Where and under what circumstances, has coal capacity reached its peak and begun to decline? We address this question with an empirical analysis of coal capacity in 56 countries, accounting for 99% of coal generation in the world. The peaks in national coal power have been equally spread per decade since 1970. The peaks are more likely to occur in country-years with high levels of electoral democracy, higher GDP per capita, slower electricity demand growth, and with low levels of political corruption. Normally, peaking coal power preceded rather than followed political coal phase-out pledges, often with long time lags. We conclude that though the cost of coal alternatives are declining and concerns over climate change increasing, coal power does not automatically peak even in situations with low demand growth, aging power plants and high import dependence. A quick and decisive destabilization of coal regimes requires, in addition, having sufficient economic capacities and strong democratic governance.publishedVersio

    Phasing out coal for 2 \ub0C target requires worldwide replication of most ambitious national plans despite security and fairness concerns

    Get PDF
    Ending the use of unabated coal power is a key climate change mitigation measure. However, we do not know how fast it is feasible to phase-out coal on the global scale. Historical experience of individual countries indicates feasible coal phase-out rates, but can these be upscaled to the global level and accelerated by deliberate action? To answer this question, we analyse 72 national coal power phase-out pledges and show that these pledges have diffused to more challenging socio-economic contexts and now cover 17% of the global coal power fleet, but their impact on emissions (up to 4.8 Gt CO2 avoided by 2050) remains small compared to what is needed for achieving Paris climate targets. We also show that the ambition of pledges is similar across countries and broadly in line with historical precedents of coal power decline. While some pledges strengthen over time, up to 10% have been weakened by the energy crisis caused by the Russo-Ukrainian war. We construct scenarios of coal power decline based on empirically-grounded assumptions about future diffusion and ambition of coal phase-out policies. We show that under these assumptions unabated coal power generation in 2022-2050 would be between the median generation in 2 \ub0C-consistent IPCC AR6 pathways and the third quartile in 2.5 \ub0C-consistent pathways. More ambitious coal phase-out scenarios require much stronger effort in Asia than in OECD countries, which raises fairness and equity concerns. The majority of the 1.5 \ub0C- and 2 \ub0C-consistent IPCC pathways envision even more unequal distribution of effort and faster coal power decline in India and China than has ever been historically observed in individual countries or pledged by climate leaders

    Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework

    Get PDF
    Economic development, technological innovation, and policy change are especially prominent factors shaping energy transitions. Therefore explaining energy transitions requires combining insights from disciplines investigating these factors. The existing literature is not consistent in identifying these disciplines nor proposing how they can be combined. We conceptualize national energy transitions as a co-evolution of three types of systems: energy flows and markets, energy technologies, and energy-related policies. The focus on the three types of systems gives rise to three perspectives on national energy transitions: techno-economic with its roots in energy systems analysis and various domains of economics; socio-technical with its roots in sociology of technology, STS, and evolutionary economics; and political with its roots in political science. We use the three perspectives as an organizing principle to propose a meta-theoretical framework for analyzing national energy transitions. Following Elinor Ostrom's approach, the proposed framework explains national energy transitions through a nested conceptual map of variables and theories. In comparison with the existing meta-theoretical literature, the three perspectives framework elevates the role of political science since policies are likely to be increasingly prominent in shaping 21st century energy transitions
    corecore