41 research outputs found

    Light-induced magnetization reversal of high-anisotropy TbCo alloy films

    Full text link
    Magnetization reversal using circularly polarized light provides a new way to control magnetization without any external magnetic field and has the potential to revolutionize magnetic data storage. However, in order to reach ultra-high density data storage, high anisotropy media providing thermal stability are needed. Here, we evidence all-optical magnetization switching for different TbxCo1-x ferrimagnetic alloy composition and demonstrate all-optical switching for films with anisotropy fields reaching 6 T corresponding to anisotropy constants of 3x106 ergs/cm3. Optical magnetization switching is observed only for alloys which compensation temperature can be reached through sample heating

    Two-magnon bound state causes ultrafast thermally induced magnetisation switching.

    Get PDF
    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime

    Effects of Atrial Fibrillation on the Human Ventricle

    Get PDF
    Rationale: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. Objective: This study investigates the effects and molecular mechanisms of AF on the human LV. Methods and Results: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. Conclusions: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle

    Same but Different? Comparing the Epidemiology, Treatments and Outcomes of COVID-19 and Non-COVID-19 ARDS Cases in Germany Using a Sample of Claims Data from 2021 and 2019

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is a severe lung condition that can be caused by a variety of underlying illnesses. Due to SARS-CoV-2, the number of cases with ARDS has increased worldwide, making it essential to compare this form of acute respiratory failure with classical causes of ARDS. While there have been several studies investigating the differences between COVID-19 and non-COVID-19 ARDS in early stages of the pandemic, little is known about the differences in later phases, especially in Germany. Aim: The aim of this study is to characterize and compare the comorbidities, treatments, adverse events, and outcomes of COVID-19-associated ARDS and non-COVID-19 ARDS using a representative sample of German health claims data from the years 2019 and 2021. Methods: We compare percentages and median values of the quantities of interest from the COVID-19 and non-COVID-19 ARDS group, with p-values calculated after conducting Pearson’s chi-squared test or the Wilcoxon rank sum test. We also run logistic regressions to access the effect of comorbidities on mortality for COVID-19 ARDS and non-COVID-19 ARDS. Results: Despite many similarities, we find that that there are some remarkable differences between COVID-19 and non-COVID-19 ARDS cases in Germany. Most importantly, COVID-19 ARDS cases display fewer comorbidities and adverse events, and are more often treated with non-invasive ventilation and nasal high-flow therapy. Conclusions: This study highlights the importance of comprehending the contrasting epidemiological features and clinical outcomes of COVID-19 and non-COVID-19 ARDS. This understanding can aid in clinical decision making and guide future research initiatives aimed at enhancing the management of patients afflicted with this severe condition

    Miniaturisierte Systeme für das All und die Praxis. Teil I: Tomaten im Weltall ... oder vom Traum des Menschen, das All zu besiedeln: Teil II: Tumorzellen im Blut ... oder vom Traum des Arztes, die Therapiewirkung direkt zu prüfen

    No full text
    Lange Zeit hat sich der Mensch damit begnügt, unseren Planeten, die Erde, zu entdecken, zu besiedeln und all seine Geheimnisse zu lüften. Auch wenn wir damit noch lange nicht fertig sind, strecken wir doch seit Jahren unsere Fühler immer weiter aus - bis in den Weltraum. Diese Welt, fernab von unserer, fasziniert den Menschen seit jeher. Doch was, wenn aus Faszination irgendwann Notwendigkeit wird? Was, wenn die Erde für den Menschen und seine Entwicklung nicht mehr ausreicht? In Sachen Ressourcen und der Erhaltung unserer Umwelt stoßen wir immer wieder auf Grenzen. So ist es nur natürlich, das der Mensch weiter vorausschaut. Was kann uns das Weltall mit all seinen Weiten in Zukunft bieten? Vermeintlich unentdeckte Welten warten nur darauf, uns ihre Möglichkeiten zu offenbaren

    Zirkulierende Tumorzellen - voll automatisierte Vereinzelung aus Blut

    No full text
    Circulating tumor cells (CTCs) are interesting for both, cancer diagnostics and therapy. Hence for practical use, very efficient methods are required to enrich, detect and isolate the typically very low number of CTCs. Herein, we present the “CTCelect device”, enabling the fully automated counting and isolation of CTCs from a blood sample for further biological investigations
    corecore