33 research outputs found

    The effects of early-treated phenylketonuria on volumetric measures of the cerebellum

    Get PDF
    Past murine studies of phenylketonuria (PKU) have documented significant effects on cerebellum at both the gross and cellular levels. The profile of neurocognitive and motor difficulties associated with early-treated PKU (ETPKU) is also consistent with potential cerebellar involvement. Previous neuroanatomical studies of cerebellum in patients with PKU, however, have yielded mixed results. The objective of the present study was to further examine potential differences in cerebellar morphometry between individuals with and without ETPKU. To this end, we analyzed high resolution T1-weighted MR images from a sample of 20 individuals with ETPKU and an age-matched comparison group of 20 healthy individuals without PKU. Measurements of whole brain volume, whole cerebellum volume, cerebellar gray matter volume, and cerebellar white matter volume were collected by means of semiautomatic volumetric analysis. Data analysis revealed no significant group differences in whole brain volume, whole cerebellar volume, or cerebellar white matter volume. A significant reduction in cerebellar gray matter volume, however, was observed for the ETPKU group compared to the non-PKU comparison group. These findings expand on previous animal work suggesting that cerebellar gray matter is impacted by PKU. It is also consistent with the hypothesis that the cognitive difficulties experienced by individuals with ETPKU may be related to disruptions in gray matter. Additional studies are needed to fully elucidate the timing and extent of the impact of ETPKU on cerebellum and the associated neurocognitive consequences

    FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models

    Get PDF
    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development

    Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The brain develops in concert and in coordination with the developing facial tissues, with each influencing the development of the other and sharing genetic signaling pathways. Autism spectrum disorders (ASDs) result from alterations in the embryological brain, suggesting that the development of the faces of children with ASD may result in subtle facial differences compared to typically developing children. In this study, we tested two hypotheses. First, we asked whether children with ASD display a subtle but distinct facial phenotype compared to typically developing children. Second, we sought to determine whether there are subgroups of facial phenotypes within the population of children with ASD that denote biologically discrete subgroups.</p> <p>Methods</p> <p>The 3dMD cranial System was used to acquire three-dimensional stereophotogrammetric images for our study sample of 8- to 12-year-old boys diagnosed with essential ASD (<it>n </it>= 65) and typically developing boys (<it>n </it>= 41) following approved Institutional Review Board protocols. Three-dimensional coordinates were recorded for 17 facial anthropometric landmarks using the 3dMD Patient software. Statistical comparisons of facial phenotypes were completed using Euclidean Distance Matrix Analysis and Principal Coordinates Analysis. Data representing clinical and behavioral traits were statistically compared among groups by using χ<sup>2 </sup>tests, Fisher's exact tests, Kolmogorov-Smirnov tests and Student's <it>t</it>-tests where appropriate.</p> <p>Results</p> <p>First, we found that there are significant differences in facial morphology in boys with ASD compared to typically developing boys. Second, we also found two subgroups of boys with ASD with facial morphology that differed from the majority of the boys with ASD and the typically developing boys. Furthermore, membership in each of these distinct subgroups was correlated with particular clinical and behavioral traits.</p> <p>Conclusions</p> <p>Boys with ASD display a facial phenotype distinct from that of typically developing boys, which may reflect alterations in the prenatal development of the brain. Subgroups of boys with ASD defined by distinct facial morphologies correlated with clinical and behavioral traits, suggesting potentially different etiologies and genetic differences compared to the larger group of boys with ASD. Further investigations into genes involved in neurodevelopment and craniofacial development of these subgroups will help to elucidate the causes and significance of these subtle facial differences.</p

    Facial Structure Analysis Separates Autism Spectrum Disorders Into Meaningful Clinical Subgroups

    Get PDF
    Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011). Geodesic distances between standardized facial landmarks were measured from three-dimensional stereo-photogrammetric images. Subjects were evaluated for autism-related symptoms, neurologic, cognitive, familial, and phenotypic variants. The most compact cluster is clinically characterized by severe ASD, significant cognitive impairment and language regression. This verifies utility of facially-based ASD subtypes and validates Aldridge et al.\u27s severe ASD subgroup, notwithstanding different techniques. It suggests that language regression may define a unique ASD subgroup with potential etiologic differences

    Landmarking the brain for geometric morphometric analysis: An error study

    Get PDF
    Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm-5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm-3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes. © 2014 Chollet et al

    Cerebellar white matter abnormalities in phenylketonuria (PKU) [abstract]

    No full text
    Abstract only availablePhenylketonuria (PKU) is a recessive genetic disorder that is characterized by an individual's body being unable to utilize the amino acid phenylalanine because of a dysfunction with the enzyme phenylalanine hydroxylase. Previous studies have shown that the brains of individuals with PKU are decreased in overall size. Additionally, abnormalities of white matter have been previously documented in the cerebrum and periventricular areas. A study of rats with induced hyperphenylalaninemia (i.e., an excess of phenylalanine in the blood) showed cellular abnormalities in the cerebellum (Hogan and Coleman, 1981). We hypothesize that individuals with PKU will show abnormalities in measures of the cerebellum relative to typically developing individuals. The data presented here are from a pilot study examining white matter in the cerebella of individuals with PKU. We collected magnetic resonance images (MRIs) of 1mm³ voxel resolution from four individuals between 12-20 years of age. Overall cerebellar volume and cerebellar white matter volume data were collected using Analyze 8.1 and were then compared between controls and individuals with PKU. The small sample size prohibits statistical analysis so we present trends in our comparative data. Results suggest that overall cerebellar volume and cerebellar white matter volume are decreased in individuals with PKU. Future analysis of larger samples will determine whether these trends in cerebellar abnormalities in individuals with PKU are significant.Thompson Center Undergraduate Research Opportunit
    corecore