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Abstract Varied cluster analysis were applied to facial

surface measurements from 62 prepubertal boys with

essential autism to determine whether facial morphology

constitutes viable biomarker for delineation of discrete

Autism Spectrum Disorders (ASD) subgroups. Earlier

study indicated utility of facial morphology for autism

subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011).

Geodesic distances between standardized facial landmarks

were measured from three-dimensional stereo-photogram-

metric images. Subjects were evaluated for autism-related

symptoms, neurologic, cognitive, familial, and phenotypic

variants. The most compact cluster is clinically character-

ized by severe ASD, significant cognitive impairment and

language regression. This verifies utility of facially-based

ASD subtypes and validates Aldridge et al.’s severe ASD

subgroup, notwithstanding different techniques. It suggests

that language regression may define a unique ASD sub-

group with potential etiologic differences.

Keywords Autism � Cluster analysis � Language
regression � Facial phenotype � Biomarker � Outcome

indicators

Introduction

Autism Spectrum Disorder (ASD) comprises a group of

complex neuropsychiatric disorders of childhood, diag-

nosed on the basis of the behavioral phenotype. The ASD

phenotype is characterized by social deficits, impaired
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communication, and restricted and repetitive behavior

patterns (American Psychiatric Association 2013). A recent

study by Aldridge et al. (2011) using 3D facial imaging

discovered structural differences between faces of children

with ASD and typically developing children. They sug-

gested that differences in facial morphology may reflect

alterations in embryologic brain development. Within ASD

they identified two clinically discrete ASD subgroups,

using cluster analysis of the facial measurements. This

current study validates the previous findings by using an

alternative distance measurement and multiple clustering

techniques to verify the power and utility of facially based

ASD subtypes. Geodesic (surface) rather than Euclidean

(straight) measurements and four exceptionally robust

clustering techniques were utilized to determine whether

similar or additional subgroups would be identified.

Extensive use of mathematical algorithms for data selec-

tion, multiple cluster analysis techniques, validity and

classification models optimized the results.

Experimental results from cluster analysis based on

facial morphology using surface distance features revealed

that the ASD cohort studied could be separated into three

clusters. Examination of clinical data using mean and

correlation analysis revealed that each of the three clusters

demonstrated relatively distinctive clinical and behavioral

traits. One of the clusters (Cluster 2) exhibited clinical

traits similar to those described by Aldridge et al. (2011) in

their subgroup 1. If these facial groups identify etiologi-

cally discrete subsets of ASD, their identification may

allow clinicians and researchers to identify precise etio-

logic bases of the ASD. This study demonstrates the gen-

eralization of facial phenotypes as a viable biomarker for

identifying ASD subgroups. The similarity of the results

obtained show that it is not dependent on measurement

type (Euclidean vs. geodesic) or the cluster technique. This

confirms that facial measurements provide a replicable and

important biomarker in autism.

Methods

Subjects

Sixty-two prepubertal Caucasian boys between 8 and

12 years of age, who had been diagnosed with ASD at the

Thompson Center for Autism and Neurodevelopmental

Disorders, were recruited for study. Forty-two subjects had

also participated in the Simons Simplex Collection (SSC)

and their clinical data were available for analysis. The

remaining 22 subjects were recruited from the Thompson

Center database, which contains similar clinical data. To

ensure a homogeneous study set, all subjects were male, of

Caucasian ancestry and old enough to have a mature facial

and skull growth, but prepubertal to avert androgen surge

effects on facial bone growth (Farkas and Posnick 1992)

and classified as having essential autism. Boys with rec-

ognized genetic syndromes, including fragile X syndrome,

chromosomal disorders, including copy number variants

(CNV), generalized dysmorphology or gestational age less

than 35 weeks were excluded. Generalized dysmorphology

was assessed using the autism dysmorphology measure

(ADM) (Miles et al. 2008). In addition, 83 % (52/63) of the

ASD subjects overlap with the Aldridge cohort (Aldridge

et al. 2011). A control group of 36 typically developing

prepubertal Caucasian boys between 8 and 12 years of age

were recruited from the community under the Thompson

Center control subject recruitment protocol.

ASD Diagnosis

ASD diagnoses were made using the Thompson Center

diagnostic protocol, which consists of complete clinical,

medical, behavioral, and family histories, physical, neuro-

logic and dysmorphology examinations, and autism diag-

nostic measures. Of the 62 boys with ASD, 42 had also

completed the SSC protocol, which included the Autism

Diagnostic Interview—Revised (ADI-R) (Lord et al. 1994)

and Autism Diagnostic Observation Schedule (ADOS)

(Lord et al. 2000). The 20 boys diagnosed exclusively

through the Autism Medical Clinic were diagnosed on the

basis of DSM-IV (American Psychiatric Association 2000)

criteria (as appropriate during the time period of diagnosis)

using a center-specific protocol based on the ADI-R, clin-

ical observation and judgment of the clinician. Seventy-five

percent also had an ADI-R or ADOS, which substantiated

the Thompson Center diagnosis. ASD DSM-IV subtype

diagnoses present within the study population were Autistic

Disorder, Asperger Syndrome, and Pervasive Development

Disorder-not otherwise specified (PDD-NOS).

This study was carried out under the guidelines and

approval of the Health Sciences Institutional Review

Board. The parents or legal guardians of all subjects
Fig. 1 Illustration of the 19 Farkas anthropometric landmark points

used to derive facial surface distance features
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provided written consent for participation in this study;

each subject provided voluntary assent.

Data Acquisition

The 3DMD� Cranial system was used to reconstruct the

3D surface model (both the geometry and the co-registered

texture image) of each subject, similar to previous work

(Aldridge et al. 2011). We used the 3dMD software to

obtain 3D coordinate data for a set of 19 anthropometric

facial landmarks, as shown in Fig. 1, following (Farkas

1994). These landmark measurements were carried out by a

rater (WQ) trained in use of the software program and

verified by another rater (TO). Facial surface (geodesic)

distances between all possible pairs of the 19 landmark

coordinate points were computed to obtain a total of 171

facial distance features, as described in Fig. 1. For exam-

ple, the distance from the midpoint between both eyes

(B) to the midpoint of the chin (S) is designated as BS

distance feature. Each subject’s facial distance measure-

ments were normalized by dividing them by the geometric

mean of all the geodesic distances obtained for the subject.

3D Geodesic Distance Computation

Geodesic distance is defined as the shortest distance

between any pair of anatomical landmark points along the

surface of the face. Computing geodesics on polyhedral

surfaces has been a fundamental problem in digital

geometry processing and has been extensively studied.

Representative work includes the Mitchell, Mount and

Papadimitriou algorithm (MMP) (Mitchell et al. 1987) and

the Chen and Han algorithm (CH) (Han 1990), which both

compute the exact geodesic distance on triangle meshes. It

is well recognized that this geodesic suffers from topo-

logical and geometric changes due to its local nature. For

example, a small shortcut or miss-measurement may result

in a significantly large change of the geodesic path and

distance. In this work, we apply a global approach for the

robust computation of geodesics on polygonal meshes

(Quynh et al. 2012). This method takes a completely dif-

ferent strategy to compute the geodesic in an iterative and

global manner, in contrast to the MMP and CH algorithms,

which propagate the window (a data structure which

encodes the distance) from the source to the destination.

To compute the shortest distance along the surface, the

first iteration is initialized using the Euclidean distance,

which is able to bridge small holes and gaps. For each

iteration, our method computes the vector field X which

matches the gradient of the current distance field, and

normalizes X. Then it finds the closest scalar potential d by

minimizing
R
M

rd � Xj j2dA over the entire meshM, which

is equivalent to solve a Poisson equation Dd ¼ div Xð Þ.
These procedures are repeated until the convergence. This

algorithm for Defect-Tolerant Geodesic (DTG) distance

works quite well for the 3D face model, as the computed

geodesics are very resilient to small topological and geo-

metric noises (Xin et al. 2012). Hence, no pre-processing is

required for smoothing or noise removal.

Clinical Data Evaluation

Each of the boys was evaluated for characteristics of their

ASD diagnosis (social function, verbal function, repetitive

behavior and language level), behavioral problems

(aggression, attention deficits and self-injurious behaviors),

out-come measures (IQ, communication, daily living skills,

socialization and Vineland Adaptive Behavior Scale com-

posite scores), the clinical course of their disorder (presence

of regression at onset), medical and neurological variables

(seizures, electroencephalogram results) and physical mor-

phology (head circumference and dysmorphology).

Measures administered include the ADI-R (Lord et al.

1994), ADOS (Lord et al. 1989), Vineland Adaptive

Behavior Scale II (Sparrow et al. 1984), an age- and

development-appropriate IQ test (Full Scale IQ (FSIQ),

Verbal IQ (VIQ), Nonverbal IQ (NVIQ)), Social Respon-

siveness Scale (SRS) (Constantino and Gruber 2005), and

Broad Autism Phenotype (BAPQ) (Sasson et al. 2013).

Parental alcohol use data was obtained using a Parent

Substance Use questionnaire, based on the CAGE

Assessment (Ewing 1984), for families who participated in

the SSC project. A similarly detailed questionnaire was

completed by parents of subjects recruited the Autism

Medical Clinic. Alcoholism was defined as excessive use

of alcohol, tolerance to high amounts of alcohol con-

sumption and/or negative consequences to family, jobs or

health (Wade et al. 2014). In addition, a detailed family

history was obtained for all subjects by the clinician with

extensive experience in the family history method. Not all

measures of IQ were available for a small number of boys.

All participants received complete medical and neurolog-

ical examinations, including assessment of growth and

dysmorphology.

The ADI-R and ADOS, which are considered the gold

standard diagnostic instruments, measure the amount of

impairment for the three autism core symptom areas; 1.

Social functioning, 2. Communication, both verbal and

nonverbal and 3. Repetitive behaviors. Higher scores

indicate greater symptom severity. For each area of

impairment a numeric score specifies the cut-off above

which an ASD diagnosis is indicated. SRS score, devel-

oped for children between 4 and 18 years, measures the

1304 J Autism Dev Disord (2015) 45:1302–1317
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severity of autism spectrum symptoms that occur in social

settings. It assesses social awareness, social information

processing, capacity for reciprocal social communication,

social anxiety/avoidance, and autistic preoccupations and

traits. BAPQ scores are used to assess relatives of the study

subject for language and personality characteristics diag-

nostic of a broad autism phenotype. The three subscales

quantitatively measure characteristics that correspond to

the diagnosis of autism in the DSM—IV: social deficits,

stereotyped-repetitive behaviors, and social language

deficits.

Cluster Analysis

Cluster analysis is the identification of groups of observa-

tions that are cohesive and separated from other groups

(Fraley and Raftery 2000). Our goal was to identify clusters

of boys with similar facial morphological features within

the ASD dataset that correlate with clinical and behavioral

traits. Our hypothesis is derived from previous work

(Aldridge et al. 2011) that suggested differences in facial

morphology reflect alterations in embryologic brain

development in children with ASD compared to typically

developing children as well as suggesting potential etio-

logic differences. A variety of clustering algorithms can be

used to separate a finite unlabeled data set, like ours, into a

finite and discrete set of ‘‘natural,’’ hidden data structures

(Xu and Wunsch 2005). We chose 4 different clustering

algorithms to apply to our dataset: expectation maximiza-

tion (EM) (Fraley and Raftery 2000), self-organizing fea-

ture map (SOM) (Kohonen 1998), K-means (Hartigan and

Wong 1979), and partitioning around medoids (PAM)

(Kaufman and Rousseeuw 1990).

EM algorithm is a well-known general-purpose machine

learning technique for clustering. It is a model-based

method. EM assigns a probability distribution to each

instance, which indicates the probability of it belonging to

each of the clusters. EM can decide how many clusters to

create by cross validation (as done in all our experiments),

or you may specify a priori how many clusters to generate.

We implemented the EM algorithm using the Weka data-

mining tool (Witten and Frank 2005). SOM also is a

model-based clustering method and uses a neural network

approach. It maps all the instances (points) of a given

dataset in a high-dimensional source space into a 2 to 3-d

target space, such that, the distance and proximity rela-

tionship among the examples in the dataset are preserved as

much as possible. The objective of SOM is to represent

high-dimensional input patterns with prototype vectors that

can be visualized in a two-dimensional lattice structure (Xu

and Wunsch 2005). Each unit in the lattice is called a

neuron, and adjacent neurons are connected to each other,

which provide clear topology of how the network fits itself

to the input space. Input patterns are fully connected to all

neurons via adaptable weights, and during the training

process, neighboring input patterns are projected into the

lattice, corresponding to adjacent neurons. The size of the

lattice, i.e. the number of clusters (k), must be predefined.

K-means is a very simple and widely used partition based

clustering method (Jain 2010). K-means algorithm finds a

partition such that the squared error between the empirical

mean of a cluster and the points in the cluster is minimized.

The goal of K-means is to minimize the sum of the squared

error over all K clusters. K-means algorithm requires three

user-specified parameters: number of clusters K, cluster

initialization, and distance metric. The PAM clustering

algorithm is also a partition based clustering method. PAM

tries to avoid outlier sensitivity, a known fault of K-means,

by using medoids (the most centrally located object in the

cluster) as a reference point rather than the mean value of

the objects in a cluster. Thus, PAM starts from an initial set

of medoids and iteratively replaces one of the medoids by

one of the non-medoids, if it improves the total distance of

the resulting clustering.

Different cluster configurations results were obtained by

varying the input parameters of the four clustering algo-

rithms when applied to the ASD data. However the ques-

tion remains: how do we know which set of clusters is valid

or best fit the data set and how many clusters actually do

exist in the data? Cluster validity refers to formal proce-

dures that evaluate the results of cluster analysis in a

quantitative and objective fashion (Jain 2010). In cluster

validation (Kovács et al. 2005), two measurement criteria

have been proposed for evaluating and selecting an optimal

clustering scheme: Compactness and Separateness. Com-

pactness measures how close the members of each cluster

are to each other. A typical measure of compactness is the

variance. Separateness measures how separated the clusters

are from each other. A good cluster algorithm result should

yield clusters that are compact and well separated. The aim

of cluster validation is to find the cluster partition set which

is the most appropriate/optimal to the input dataset.

The cluster validity analysis platform (CVAP) Matlab

tool (Wang et al. 2009) estimates the quality of the dif-

ferent clustering algorithms’ results and attempts to deter-

mine statistically which set of clusters are optimal using

multiple validity indices. There are different types of

cluster validity indices that measure the quality of clus-

tering results. Validation indices based on internal criteria

assess the fit between the structure imposed by the clus-

tering algorithm (clustering) and the data by itself. Thus,

the clustering results are evaluated using the quantities and

features inherent in the data set (Arbelaitz et al. 2013). For

the evaluation of the multiple clustering results obtained on

the ASD study population, we used four following internal

criteria validation indices to measure the goodness of the

J Autism Dev Disord (2015) 45:1302–1317 1305
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clusters, since the underlying structure of the data is

unknown.

1. Silhouette index (Rousseeuw 1987). This is a com-

posite index that measures both the compactness (using

the distance between all the points in the same cluster)

and separation of clusters (based on the nearest

neighbor distance). A larger average Silhouette index

indicates a better overall quality of the clustering

result.

2. Dunn index (Halkidi et al. 2001). A measure that

maximizes the inter-cluster distances while minimizing

the intra-cluster distances. A large value indicates the

presence of compact and well-separated clusters. Thus,

the maximum value is the optimal clustering result.

3. Davies-Bouldin (DB) index (Bolshakova and Azuaje

2003). This measures the average value of the similarity

between each cluster and its most similar cluster. A

lower DB index implies a better cluster configuration.

4. Calinski-Harabasz (CH) index (Dudoit and Fridlyand

2002). This measures between-cluster isolation and

within-cluster coherence. Its maximum value deter-

mines the optimal clustering configuration.

Another approach to validating the number of clusters

present in a dataset is to view clustering as a supervised

classification problem, in which we must also estimate the

‘‘true’’ class labels (Tibshirani andWalther 2005). Given the

output labels of a given clustering algorithm, we apply it to

train and build classification models (classifiers). Our goal is

to see how well the models can predict the labels using the

output of the clustering algorithms. The basic idea is that

‘true’ class labels will improve the prediction strength of the

classification models. Hence, the resulting ‘‘prediction

strength’’ measure assesses the quality of the clustering

results. We applied three different classification models

(support vector machines (SVM) (Burges 1998), neural

networksmultilayer perceptron (MLP) (Jain et al. 1996), and

random forest (RF) (Breiman 2001)) to the clustering results.

An essential aspect of all cluster analysis is feature

selection/extraction.Using a large number of features (171 in

our case) increases the likelihood of feature redundancy. The

goal of feature selection is to remove irrelevant/redundant

features by finding the minimal feature subset necessary and

sufficient to support the target concept (Dash and Liu 1997).

The feature subset should improve and not degrade predic-

tion accuracy and be a fairly accurate representation of the

original feature distribution. To determine which facial

features were significant and discriminant among the 171

features, we applied three feature selection methods. parallel

scatter search algorithm (Garcı́a López et al. 2006), best first

search (Xu et al. 1988), and linear forward selection (Gutlein

et al. 2009). We validated the significance of the features by

reapplying the classification models. We expected that the

discriminant features would improve the prediction strength

of the models or at least not degrade performance of the

classifiers.

Statistical Comparisons

To determine significance of results obtained for the facially

defined clusters, we evaluated the statistical differences

between the clusters using the univariate one-way analysis of

variance (ANOVA) test along with the Student’s t test for

continuous variables, v2 and test for categorical variables.

The ANOVA test generalizes the Student’s t test for between

comparisons for multiple groups. Hence, in addition, we

performed the student’s t test for each distance measure for

comparisons between each pair of clusters to gain insight

into the significance of difference, where needed. The t test

informs us onwhich pairs of clusters are actually statistically

different since the ANOVA’s p value only indicates that at

least one cluster is statistically different from another.

Results

Choosing Optimal Set of Clusters

The EM algorithm (unlike K-means, SOM and PAM) can

decide how many clusters to create by cross validation

based on resampling (Fraley and Raftery 2000). Thus we

ran the EM algorithm initially in this manner and it

Table 1 Evaluation of clustering algorithms using internal criteria

cluster validation measures

Clustering algorithm

(no. of clusters)a
Cluster validation measures (index

scores)

Silhouette Davies-

Bouldin

Calinski-

Harabasz

Dunn

K-means (3) 0.12 1.65 12.42 0.84

K-means (4) 0.13 1.80 11.26 0.85

Expectation

maximization (3)

0.12 1.91 12.21 0.81

Self-organizing

feature map (4)

0.11 1.71 10.24 0.87

Self-organizing

feature map (3)

0.13 1.88 12.41 0.85

Partitioning around

medoids (3)

0.10 1.73 11.41 0.77

Best method according to each index is highlighted in bold

For all validation measures except Davies-Bouldin (DB), a higher

score indicates better cluster configuration. For the DB index, a lower

score implies better cluster configuration
a Number of clusters in algorithm output result. For example,

K-Means (3) = 3 cluster K-means result

1306 J Autism Dev Disord (2015) 45:1302–1317
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estimated 3 clusters within the dataset. We also reran the

EM algorithm with different values of k (number of clus-

ters) from 2 to 7. (We did not go beyond 7 due to the

limited size of the ASD data.) The best EM result (as

determined by cluster validity indices) was for k = 3.

Based on this, for the remaining three cluster algorithms

we varied k from 3 to 7. The best EM result was compared

to the 21 outputs from the other three algorithms (K-means,

SOM, PAM). In Table 1, we compare the top six best

results. Based on the internal criteria cluster validation

indices, we selected the K-means output with k = 3 as the

optimal cluster configuration. Those 3 clusters identified

within the 62 subjects ASD dataset were designated Cluster

1 (29 %, 18 boys), Cluster 2 (23 %, 14 boys), and Cluster 3

(48 %, 30 boys).

Machine learning techniques and evaluation metrics

were employed to verify the distinctness of the clusters by

training and testing three different classification models

(SVM, MLP and RF). Models were trained to classify

using the entire set of 171 facial geodesic distance mea-

sures. Given the limited size of the dataset, a threefold

cross-validation approach, that splits the dataset into 3

groups, was used. Thus, we train on two-thirds of the data

and test on the reminder third. Results are average of the

three separate runs (folds). Evaluation metrics used were

Classification Accuracy, Precision (Positive Predictive

Value), and Recall (Sensitivity). Classification accuracy is

defined as the percentage of test set samples that are cor-

rectly classified by the model. Precision (exactness) mea-

sures the proportion of actual positives that are correctly

identified by the model. Recall (completeness) is the ratio

of correctly classified samples to total number of samples

for a given class. We report both metrics to present a

complete depiction of the overall performance of the

models in terms of how precisely and completely it cor-

rectly identified each cluster on the average.

A minimal set of 31 features was derived by taking the

mathematical union of output results from three feature

selection algorithms. Using this minimal set of 31 facial

distance measures resulted in improved performance for

two models (SVM, RF), and equal performance for MLP

(Table 2). This validates that 31 features provide a robust

and discriminant representation of the entire 171 facial

distance measures.

To obtain a visual description of cluster separation, we

performed a Principal Component Analysis (PCA) on the

31 significant features. The distribution of the clusters

using the first two principal component axes is shown in

Fig. 2a. An illustration of the data using a dendrogram

based on mean linkage is shown in Fig. 2b. Note that the

dendrogram is only for visualization not interpretation of

data, as hierarchical clustering methods were not applied to

the data. Figure 3 shows the distribution of the clusters plus

the control group. The control group overlaps strongly with

the cluster 3, partially with cluster 1and not at all with

cluster 2.

Facial Features Selection

The discriminant set of 31 facial geodesic features is

illustrated in Fig. 4. Each feature is denoted as the distance

from one anthropometric facial landmark to another. For

instance, BS feature indicates the distance measure from

the nasion (i.e. the midpoint of the forehead) to the

gnathion (i.e. the chin point).

All 31 distance measures were also verified to be sig-

nificant (p value less than 0.05) by doing a between com-

parison among all the clusters using the ANOVA test. In

addition, we performed the student’s t test for each distance

measure for comparison between each pair of clusters. We

were interested in identifying which means were statisti-

cally different among all possible pairs of the three clusters

(clusters 1:2; clusters 2:3, clusters 3:1). 12 facial distance

measures were ascertained as statistically significant

among all three clusters, based on which features had a p

value of less than 0.05 for the pair-wise student’s t tests.

We describe these 12 facial distances, which were infor-

mative for all three clusters, in detail by mean and standard

Table 2 Evaluation of cluster separateness using all 171 facial distance features versus minimal 31 feature set in three classification models

Classification models Classification

accuracy (%)

Overall precision/

recall

Precision/recall per cluster

All 31 All 31 Cluster 1 Cluster 2 Cluster 3

All 31 All 31 All 31

Support vector

machine (SVM)

91.94 95.16 0.92/0.92 0.96/0.95 0.90/0.93 0.91/1.0 0.92/0.86 1.0/1.0 0.94/0.94 1.0/0.83

Neural networks multilayer

perceptron (MLP)

93.55 93.55 0.94/0.94 0.94/0.94 0.91/0.97 0.91/0.97 1.0/0.86 1.0/1.0 0.94/0.94 0.93/0.83

Random forest 88.71 91.94 0.91/0.89 0.92/0.92 0.81/1.0 0.88/0.97 1.0/0.79 1.0/0.86 1.0/0.78 0.94/0.89

Overall performance of the classfication models improved when trained and tested using minimal set of 31 features rather than all 171 features,

except in the case of cluster 3 for SVM and MLP
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deviation values (Table 3). Clustering results presented in

Fig. 3 along with Table 3 validates cluster 2 group as a

very compact and separate group among the ASD study

population and the typically developing boys (the control

group) using facial geodesic distance measures.

For each cluster, we identified which set of features were

discriminant and useful in describing each cluster facially

(Fig. 5). Cluster 1 is described by overall decreased surface

facial heights (BS,ES,GS,HS,LS,MS,QS), combinedwith a

broader maxillary midface from the temporal landmark to the

lower nose landmarks (JK, JL). However, these individuals,

demonstrate some overlap with the typically developing

controls (Fig. 3). Interestingly, cluster 1 has the lowest stan-

dard deviation values for 7 of the 12 discriminant facial dis-

tances measurements (Table 3). This further verifies its

compactness as the relatively low standard deviation values

imply facial distancesmeasureddonot varywidely among the

group (Fig. 2a). Cluster 2 subjects are facially defined by

overall increased surface facial heights (BS, ES, GS, HS, LS,

MS, QS), a decreased mid-face height (HS), and longest

Fig. 2 Visualization of ASD clusters using a principal coordinates

analysis plot of eigenscores for the first two principal axes. Axis 1

accounts for 34.37 % of the variance within the entire sample, and

axis 2 accounts for 24.78 % of the variance. b Dendrogram based on

mean linkage. Note: this is only for visualization not interpretation of

data, as hierarchical clustering methods were not applied to the data

Fig. 3 Visualization of ASD

clusters overlapped with the

control group of 36 boys using

principal coordinates analysis

plot of eigenscores for the first

two principal axes. Axis 1

accounts for 30.88 % of the

variance within the entire

sample, and axis 2 accounts for

24.58 % of the variance
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mouth widths (NO and NQ). They also show no overlap with

the control boys (Fig. 3). Cluster 2 is characterized by the

most exaggerated facial features (Table 3; Fig. 5) among the

ASD study population. For 11 of the 12 facial distance mea-

sures in Table 3, cluster 2 subjects either have the maximum

or the minimum distance among the three clusters. Cluster 3

appears to be in between clusters 1 and 2, based on facial

morphological features. They also have the smallest NO and

NQ surface distances. Similar to cluster 1, cluster 3 individ-

uals demonstrate considerable overlap with along with the

typically developing boys. Thus, we observe that majority of

the boys with ASD cluster with the typically developing

controls, as also demonstrated by Aldridge et al. (2011).

Clinical Results

The goal of this study section is to determine whether the

ASD subgroups defined by the cluster analysis are clini-

cally distinctive. The clinical phenotype associated with

each cluster is described based on five clinical areas. ASD

diagnostic measures (ASD subsets, ADI-R and ADOS

scores), outcome indicators (IQ, Adaptive Behavior, lan-

guage), neurologic indicators (head size, seizures, electro-

encephalogram and brain Magnetic Resonance Imaging

(MRI) results), family history (alcoholism, ASD symp-

toms), and clinical course (regression).

ASD Core Symptoms

ADI-R and ADOS scores, which indicate greater impair-

ment with higher scores, were above ASD diagnostic cut-

offs for subjects in each cluster affirming their autism

diagnoses (Table 4). Social dysfunction, measured by the

ADI-R, was most impaired in cluster 2, and significantly so

compared with cluster 3. Cluster 2 also contained the

highest percentage of nonverbal subjects; verbal subjects

were more impaired in clusters 1 and 2 than in cluster 3.

Repetitive behaviors were highest in clusters 1 and 2, with

cluster 1 having a statistical significance over cluster 3.

Consistent with the ADI-R, ADOS calculated severity

scores were higher for clusters 1 and 2. Overall, individuals

in cluster 2 were most impaired, though often not signifi-

cantly from cluster 1. Cluster 3 was less symptomatic

generally and with a wider range of scores suggesting a

more heterogeneous subset of individuals.

Intelligence and Adaptive Behavior Scores

Though long-term functional outcomes are difficult to

predict in ASD, IQ scores, language development and

adaptive functioning provide some direction (Table 5). All

intelligence scores (NVIQ, VIQ and FSIQ) indicate that

boys in cluster 2 have significantly lower intelligence than

those in either cluster 1 or 3. Cluster 1 presented the

highest scores throughout though differences were not

significantly different from those in cluster 3. Wide ranges

and high standard deviations indicate significant hetero-

geneity in IQ and adaptive functioning in the 3 clusters.

The Vineland II adaptive scores did not discriminate

between the three clusters to the same degree as IQ

(Table 6). Vineland Adaptive Scores were similar for the

three groups with the exception of lower communication

scores for cluster 2.

Clinical Course

A history of language regression at the onset of ASD

symptoms in the first 3 years occurred in cluster 2 subjects

more than twice as often as in clusters 1 or 3 (57.1 vs. 16.7

and 20 %). (Table 7). There was no significant difference

in language regression between clusters 1 and 3. When

regression history was compared with IQ there was a sig-

nificant inverse association for all intelligence scores such

that individuals whose ASD presented with regression had

the lowest IQ scores (Table 8).

ASD Behavioral Subtype Diagnoses

Though Autism behavioral subtype diagnoses are no longer

considered valid diagnostic indicators (Lord et al. 2012),

these data are available and do convey some information

about what the diagnosing clinicians thought about the

subjects. Cluster 2 boys consisted of 79 % Autistic Dis-

order, 14 % as PDD-NOS, and 7 % as Asperger Syndrome.

A key finding is that individuals in cluster 2 were

Fig. 4 Illustration of the 31 discriminant facial distance features for

ASD clusters. 31 minimal discriminant features set from feature

selection phase is illustrated on the face (BS, EJ, GJ, LS, CH, EN, GO,

MN, CK, EP, GS, MS, CL, EQ, HS, NO, CO, ES, JK, NQ, DH, FO, JL,

QR, DI, FP, JN, QS, DJ, FQ, and JQ). Though these distances are

described using straight lines, they are not straight but rather the

shortest lines along the surface from one landmark point to the other
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diagnosed primarily with Autistic Disorder (78.6 %)

whereas cluster 1 (50 % Autistic Disorder, 44 % Asperger

Syndrome, 6 % PDD-NOS) and cluster 3 (47 % Autistic

Disorder, 33 % Asperger Syndrome, 20 % PDD-NOS)

consist of a distribution of subtypes reflective of the total

study population (55 % Autistic Disorder, 31 % Asperger

Syndrome, 15 % PDD-NOS). Also, the Asperger diagnosis

is closely correlated with IQ measurements, especially

verbal IQ and verbal functioning. Separation of patients

proposed in this paper provides subsets of patients based on

a physical biomarker—facial morphology. Facially defined

clusters reflect separation between more severely autistic

children (previously grouped under Autistic Disorder) and

less severe (previously grouped in Asperger Syndrome and

PDD).

Neurologic Indicators

Complete data on neurologic indicators were available for

seizures and head circumference. Seizures were more

common in cluster 2 (28.6 %) than in clusters 1 (22.2 %)

or 3 (10.0 %) though differences were not statistically

different. This may reflect the small number and young age

of the subjects. Head size measured by orbital occipital

circumference and converted to Z scores for analysis,

revealed no significant differences. Cluster 1 had the

highest mean Z score (1.21) which was not statistically

different from clusters 2 (0.87) and 3 (0.70). This indicated

that the facial phenotypes were not driven by differences in

head size. Head size groups’ results for the facial distance

defined clusters also showed that clusters are not related to

macrocephaly, as the percentage of macrocephalic subjects

in each cluster were similar (cluster 1–28 %, cluster

2–29 %, and cluster 3–20 %, all–24 %) and not statisti-

cally significant.

Genetic Indicators

Genetic indicators are those data that may provide insight

into the genetic basis of ASD. These may include gender

Table 3 Statistically significant facial distance measurements across clusters

Landmark Indicates Facial description Cluster 1 Cluster 2 Cluster 3

Mean SD Mean SD Mean SD

BS

Nasion–gnathion

Facial height Mid nasal bridge to chin point ;2.05 0.05 :2.25 0.08 2.14 0.07

ES

Palpebrale inferius–gnathion

Facial height Rt Mid eye to chin point ;1.81 0.06 :2.00 0.08 1.92 0.08

GS

Endocanthion–gnathion

Facial height Lf Inner canthus to chin point ;1.87 0.05 :2.05 0.08 1.98 0.07

HS

Palpebrale inferius–gnathion

Facial height Lf Mid eye to chin point ;1.83 0.06 :2.01 0.09 1.93 0.07

FP

Endocanthion–labiale superius

Mid Face height Rt Inner canthus to mid upper lip 1.15 0.04 ;1.13 0.04 :1.21 0.03

JK

Frontotemporale–alare

Mid Face breadth Lf Lateral eye brow to Rt nasal edge :1.89 0.05 1.79 0.05 ;1.83 0.05

JL

Frontotemporale–pronasale

Mid Face breadth Lf lateral eye brow to nose septum :1.31 0.05 ;1.21 0.04 1.27 0.05

LS

Pronasale–gnathion

Lower Face height Nose septum to chin point ;1.30 0.06 :1.50 0.07 1.38 0.08

MS

Alare–gnathion

Lower Face height Lf lateral nose to chin point ;1.19 0.07 :1.42 0.09 1.26 0.08

QS

Crista philtri–gnathion

Lower face height Lf Cupids bow to chin point ;0.90 0.07 :1.15 0.09 0.96 0.08

NO

Cheilion–crista philtri

Mouth width Rt lateral mouth to Rt cupids bow 0.47 0.05 :0.53 0.06 ;0.43 0.04

NQ

Cheilion–crista philtri

Mouth width Rt lateral mouth to Lf cupids bow 0.65 0.05 :0.72 0.10 ;0.61 0.05

Significance of means of facial distances determined by univariate ANOVA test between the three clusters along with pairwise student t test

(p\ 0.001)

SD standard deviation
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and family history of autism and related neuropsychiatric

disorders. Social Responsiveness Scale (SRS) and Broad

Autism Phenotype Questionnaire (BAPQ) scores which are

designed to assess the number of autism symptoms in the

parents of individuals with ASD were analyzed for the 42

SSC project boys. Though no significant differences were

found between the clusters (Table 9), it is noted that in

each of the three measures (SRS, BAPQ-Autism, BAPQ-

Traits), mothers of boys in cluster 2 had somewhat higher

scores, indicating possible genetic or epigenetic predispo-

sition to develop an ASD. The portion of parents with

alcoholism, which is known to be significantly higher than

in families identified through an ASD (Miles et al. 2003),

did not assort by cluster. Consistent with previously pub-

lished data (Constantino and Gruber 2005), (Sasson et al.

2013), the paternal BAPQ scores for the ASD study pop-

ulation were significantly higher compared to the maternal

scores (Table 9). The relationship to gender and other

neuropsychiatric disorders could not be measured since all

subjects were male and the SSC were precluded families

with significant histories of ASD or major neuropsychiatric

diagnoses. None of the subjects had a history of chromo-

somal or other autism related disorders.

Discussion

Children with ASD diagnoses comprise a heterogeneous

population with a wide range in type, number and severity

Table 4 ASD core symptoms distribution by cluster

Diagnostic measures Cluster

1 (18)

Cluster

2 (14)

Cluster

3 (30)

Social (ADI-R A) (cutoff = 10)

Mean (SD) 23.27

(5.57)

25.58

(4.14)

19.80

(7.05)

Range 9–30 18–30 5–30

Three cluster comparison (p value) 0.02

Pairwise comparisons (Clusters

1:2, 2:3, 3:1)

(p value)

0.23 <0.01 0.09

Verbal scores (ADI-R B) (cutoff = 8)

Mean (SD) 18.80

(3.19)

18.70

(2.50)

15.91

(5.06)

Range 14–24 16–23 7–23

Three cluster comparison (p value) 0.07

Nonverbal scores (ADI-R B) (cutoff = 7)

Percent of group measured by

Nonverbal criteria

0.00 %

(0)

14.29 %

(2)

6.67 %

(2)

Repetitive behavior (ADI-R C) (cutoff = 3)

Mean (SD) 8.87

(2.47)

7.75

(1.71)

6.80

(2.47)

Range 4–12 5–10 2–12

Three cluster comparison (p-value) 0.03

Pairwise comparisons (Clusters

1:2, 2:3, 3:1)

(p value)

0.18 0.18 0.02

ADOS calculated severity scores

Mean (SD) 7.47

(1.88)

7.55

(1.51)

6.52

(1.60)

Range 5–10 6–10 4–9

Three cluster comparison (p value) 0.15

Statistically significant p-values are highlighted in bold

ADI-R data was available for 83 % of both clusters 1 and 3 and 86 %

of cluster 2 while ADOS data was available for 83, 79 and 70 % of

data for clusters 1- 3 respectively

Significance figure derived using univariate ANOVA test between the

three clusters

Fig. 5 Illustration of statistically significant facial distance measure-

ments per cluster. a Cluster 1: 2D representation. b Cluster 1: 3D

facial surface distance description. c Cluster 2: 2D representation.

d Cluster 2: 3D facial surface distance description. e Cluster 3: 2D

representation. f Cluster 3: 3D facial surface distance description.

Note: Facial surface distance features are compared among the 3

clusters. Red lines indicate maximum, orange are minimum distances

while blue imply distance is neither maximum nor minimum among

the 3 clusters (Color figure online)
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of social deficits, behavior, communication, and cognitive

difficulties which undoubtedly reflect multiple etiologic

origins (Eaves et al. 1994). An initial step in search for

etiologically discrete autism subgroups is discovery of

phenotypic features that are present in some but not all

ASD subjects, relatively discrete, quantifiable and patho-

physiologically relevant (Miles 2011). We proposed that

facial morphology, assessed by Euclidean and Geodesic

distances between anatomical landmarks, could be used to

reveal biologic homogeneity within ASD. Aldridge et al.

(2011) showed that young boys diagnosed with ASD

project a distinctive facial phenotype compared to typical

controls. The ASD face was characterized by increased

breadth of the upper face, orbits and mouth, a flattener

nasal bridge and reduced height of the philtrum and max-

illary region. Moreover, their data suggested biologic

subsets that correlated with ASD severity.

Table 5 Intelligence scores by cluster

Outcome indicators Cluster 1

(18)

Cluster 2

(14)

Cluster 3

(30)

Full Scale IQa

Mean (SD) 95.1 (18.60) 69.8 (25.98) 86.5 (21.58)

Range 68–127 31–112 38–130

FSIQ\ 70 5.6 % (1) 42.9 % (6) 16.7 % (5)

FSIQ C 70 72.2 % (13) 50.0 % (7) 63.3 % (19)

Three cluster

comparison (p value)

0.02

Pairwise comparisons

(Clusters 1:2, 2:3, 3:1)

(p value)

0.01 0.06 0.21

Verbal IQb

Mean (SD) 93.9 (20.68) 66.0 (29.66) 84.4 (26.50)

Range 65–121 13–112 23–126

VIQ\ 70 11.1 % (2) 42.9 % (6) 20.0 % (6)

VIQ C 70 66.7 % (12) 50.0 % (7) 56.7 % (17)

Three cluster

comparison (p value)

0.02

Pairwise comparisons

(Clusters 1:2, 2:3, 3:1)

(p value)

0.01 0.08 0.23

Non verbal IQc

Mean (SD) 94.8 (16.13) 73.7 (26.66) 92.3 (18.66)

Range 70–129 33–119 53–129

NVIQ\ 70 0.0 % (0) 42.9 % (6) 10.0 % (3)

NVIQ C 70 94.4 % (17) 50.0 % (7) 73.3 % (22)

Three cluster

comparison (p value)

0.01

Pairwise comparisons

(Clusters 1:2, 2:3, 3:1)

(p value)

0.02 0.04 0.64

Statistically significant p-values are highlighted in bold

Significance figure derived using univariate ANOVA test between the

three clusters
a FSIQ scores were available for 78, 93, and 80 % of clusters 1–3

respectively
b VIQ scores were available for 78, 93, and 77 % of clusters 1–3

respectively
c NVIQ scores were available for 94, 93, and 83 % of clusters 1–3

respectively

Table 6 Vineland adaptive scores by cluster

Vineland II Scores Cluster 1

(18)

Cluster 2

(14)

Cluster 3

(30)

Vineland Composite Score

Mean (SD) 73.8 (11.6) 71.0 (8.10) 77.2 (9.98)

Range 57–95 56–84 56 -100

Three cluster

comparison (p value)

0.31

Communication

Mean (SD) 77.9 (10.79) 70.2 (8.83) 80.3 (10.95)

Range 57–98 54–81 57–103

Three cluster

comparison (p value)

0.04

Pairwise comparisons

(Clusters 1:2, 2:3, 3:1)

(p value)

0.07 0.01 0.55

Daily living skills

Mean (SD) 77.8 (14.29) 78.5 (13.90) 81.4 (13.66)

Range 59–101 62–109 58–117

Three cluster

comparison (p value)

0.73

Socialization

Mean (SD) 69.7 (12.83) 69.3 (8.27) 73.9 (10.19)

Range 50–91 48–80 54–96

Three cluster

comparison (p value)

0.39

Statistically significant p-values are highlighted in bold

Significance figure derived using univariate ANOVA test between the

three clusters

Vineland II scores were available for 67, 79, and 73 % of clusters 1–3

respectively. Vineland Composite scores were available for 67, 79,

and 67 % of clusters 1–3 respectively

Table 7 Language regression by cluster

Language regression Cluster

1 (18)

Cluster

2 (14)

Cluster

3 (30)

Total

(62)

Language regression %

(#)

16.7 %

(3)

57.1 %

(8)

20.0 %

(6)

27.4 %

(17)

Three cluster comparison

(p value)

0.02

Pairwise comparisons

(Clusters 1:2, 2:3, 3:1)

(p value)

0.02 0.02 0.24

Statistically significant p-values are highlighted in bold

Regression data was available for all subjects

Significance figure derived using v2 test between the three clusters
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Our goals were to validate the Aldridge results and

identify mathematically stronger clusters using additional

statistical approaches. Identification of biologically valid,

clinically distinctive subgroups is expected to expedite the

search for autism genes and treatments. To minimize

ASD’s inherent heterogeneity, subjects were limited to

Caucasian prepubertal boys, aged 8 to 12 with no signifi-

cant dysmorphology or microcephaly. Facial distances

were measured and mapped from three-dimensional stereo-

photogrammetric images of these boys. Each of the

subjects was comprehensively evaluated for autism related

symptoms, neurologic, cognitive, familial and phenotypic

variants.

Three ASD subgroups were identified by cluster analysis

based on geodesic distances between facial landmarks

(Farkas 1994). Geodesic distance, defined as the shortest

surface distance between anatomical landmarks, has been

suggested as better suited to capture geometric structure of

3D models than Euclidean distance (Hamza and Krim

2006, Gilani et al. 2013). Our interpretation of the strength

of the cluster analysis was based on four well-known

internal criteria cluster validation indices (Silhouette,

Dunn, Davies-Bouldin, Calinski-Harabasz) (Table 1).

Cluster compactness is reflected by standard deviations

(Table 3; Fig. 2), and separation of the clusters from each

other is measured by prediction strength (as reflected by

classification accuracy, sensitivity, and positive predictive

value) of three classification models (Support Vector

Machine, Neural Networks Multilayer Perceptron, and

Random Forest) (Table 2; Fig. 3). Feature selection was

also performed using established techniques (parallel

scatter search algorithm, best first search, and linear for-

ward selection) to select a subset of 31 geodesic distances

that result in better classification and clustering of the data.

The three ASD subgroups, delineated by clusters 1, 2 and

3, have distinctive, though subtle, facial measurements.

Cluster 1 is described by a reduction in facial height mea-

sures, combined with broader maxillary midface defined by

temporal to lower nose landmarks conveys a shorter broader

face. Cluster 1 faces are well separated from clusters 2 and 3

(as illustrated by the Principal Component Analysis—

Fig. 2a); however, there is considerable overlap with typi-

cally developing subjects (Fig. 3). Features that describe

cluster 3 faces include a shorter mid-face breadth, quantified

by left lateral eye brow to right nasal edge, smaller mouth

width and a decreased distance from the temporal area on the

left to the outer edge of the right nasal alae, all of which

portray a narrow face. Cluster 3 also has some overlap with

the typical developing subjects.

Cluster 2 is mathematically the most distinctive and well-

defined cluster (Tables 2, 3; Fig. 3). The faces are best

described by an increased facial height measurements along

the surface, with the exception of a shorter midface. Mouth

widths are alsowider. (Tables 2, 3; Fig. 3). Three supervised

learningmodels (Support VectorMachine, Neural Networks

Multilayer Perceptron, Random Forest) were used to verify

the classification accuracy of the three clusters (Table 2).

Using these models, we were able to almost perfectly train

Support Vector Machine Classifier and Multilayer Neural

Network Perceptron to identify cluster 2 correctly from the

minimal set of 31 facial measurements. An F-measure of 1.0

indicates perfect classification. Cluster 2 also does not

overlap with the control boys (Fig. 3). Thus, cluster 2

Table 8 Correlation between language regression and IQ

VIQ NVIQ FSIQ

Language regression (27.4 %, 17) 47.0 67.5 56.0

No language regression (72.6 %, 45) 90.0 93.9 91.6

p value* \0.01 \0.01 \0.001

* p value reported in each column is based on using v2 test to com-

pare mean IQ scores of subjects with no language regression to those

that have

Table 9 Parental history of ASD symptoms and alcohol abuse by

cluster

Cluster1

(18)

Cluster2

(14)

Cluster3

(30)

p value*

Social Responsiveness Scale (SRS)

Mother [mean

(SD)]

27.7 (18.5) 38.6 (14.0) 30.1 (19.3) 0.31

Father [mean

(SD)]

34.4 (31.0) 29.1 (20.0) 27.0 (20.3) 0.70

Broad autism phenotype (BAPQ)—autism

Mother [mean

(SD)]

2.3 (0.9) 2.6 (0.9) 2.2 (0.9) 0.62

Father [mean

(SD)]

2.7 (0.7) 2.7 (0.9) 2.6 (1.1) 0.94

Broad autism phenotype (BAPQ)—traits

Mother [mean

(SD)]

81.3 (36.6) 88.5 (38.1) 81.0 (32.3) 0.84

Father [mean

(SD)]

95.8 (23.4) 98.8 (28.9) 95.2 (34.9) 0.95

Alcoholism

Mother

alcoholic

44.4 % (8) 42.9 % (6) 40.0 % (12)

Father alcoholic 50.0 % (9) 50.0 % (7) 50.0 % (15)

68 % of the subjects were enrolled in the Simons Simplex Collection,

thus they had no history of autism among 1st or 2nd degree relatives

and no close relatives with major neuropsychiatric disorders

Raw SRS and BAP scores were available for 67, 79, and 73 % of

Clusters 1–3 respectively

Alcoholism traits (parental history of alcohol abuse) data was avail-

able for all except 1 boy in cluster 3

* Significance figure derived using univariate ANOVA test between

the three clusters
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subjects not only show substantial cluster strength based on

compactness and separateness criteria within the ASD pop-

ulation but also is distinct from the typically developing

matched control group.

To determine whether these facial morphology based

clusters would identify analogous clinical or behavioral

subsets within the ASD diagnosis population, individuals

in each cluster were assessed, using standard measures for

ASD core symptoms, cognitive, adaptive, and language

skills, ASD subtype diagnoses, type of ASD onset and

parental autism broad phenotype indicators. Cluster 2

subjects demonstrate the most coherent clinical phenotype

with 79 % (11/14) described as Autistic Disorder, 14 % (2/

14) as PDD-NOS, and 7 % (1/14) as Asperger Syndrome.

They are clinically defined by significantly higher ADI-R

A (Social) scores, (which implies a severe social diagno-

sis), severe verbal scores and an overall highest ADI CSS

score. They also have the highest occurrence of non-verbal

patients (14 %), the lowest IQ and Vineland II adaptive

scores (except for daily living skills) in all categories. In

addition to greater severity on autism measures, cluster 2

boys had more seizures (28 %) than boys in clusters 1

(22 %) or 3 (10 %). Moreover, this subgroup reported a

likelihood of early language regression of 57 %, which is

more than twice the frequency reported for clusters 1

(17 %) and 3 (20 %). The association of frequent language

regression with cluster 2 and overall severity of Autistic

Disorder diagnosis of these subjects provide additional

evidence in line with Stefanotos’ prognosis (2008). Stef-

anotos’ findings suggest that the regressive subgroup of

children with ASD may differ from the congenital form of

the disorder in severity of behavioral symptoms and long-

term prognosis, although he argues that more evidence is

needed to justify them as a distinct subgroup with a dis-

tinguishable set of etiological considerations. Though sib-

ling data was not available, severity of the maternal SRS,

BAPQ—Autism, and BAPQ—Traits scores indicates an

underlying genetic etiology for the individuals in cluster 2.

Additional indicators of possible genetic differences

between the clusters, including gender, autism and other

psychiatric disorders in siblings and family members was

not available because 68 % of ASD study population was

from the Simons Simplex Collection (SSC). The SSC

project recruited ASD patients based on exclusion of

multiplex autism families and families with psychiatric

disorders in close family members.

Clinical phenotype of Cluster 1 subjects is described by

50 % (9/18) Autistic Disorder, 44 % (8/18) with Asperger

Syndrome, and 6 % (1/18) with PDD-NOS. They are

clinically defined by significantly higher (indicating greater

severity) ADI-R C (Repetitive Behavior) scores. They have

no occurrence of non-verbal patients along with the highest

IQ and are the least likely group to experience language

regression. Interestingly, this group also has the lowest

Vineland II adaptive daily living skills scores. Cluster 3

appears to represent the broad composition of children

diagnosed with ASD. This is the largest subgroup (48 %

(30/62)) with 47 % (14/30) of the boys described as

Autistic Disorder, 33 % (10/30) as Asperger Syndrome,

and 20 % as PDD-NOS. Clinically, they are defined by the

lowest ADI-R scores in all the categories, which implies

that this group has the least severe diagnosis socially,

verbally, and repetitive behavior wise. This group also has

the best Vineland II adaptive scores in all categories.

However, this group has lower IQ scores compared to

cluster 1 subjects, though much higher than cluster 2 sub-

jects. This may be due to the presence of 2 (6.7 %) non-

verbal boys in this group. There is a 20 % occurrence of

language regression in this group. It is important to

remember that both clusters 1 and 3 overlap with the

control boys. These two clusters are clinically distinct from

each other by their ADI-R scores with cluster 3 having

better scores than cluster 1. Table 10 provides a clinical

summary of each cluster in terms of the indicators/symp-

toms (autism core symptoms, cognitive, outcome, associ-

ated neurological symptoms and regression).

Our results are complimentary to previous study by

Aldridge et al. (2011) performed on a similar, overlapping

Table 10 Summary of clinical and behavioral severity levels for

each cluster

Clinical/behavioral

phenotypes

Cluster 1 Cluster 2 Cluster 3

Subjects

Social competency

(ADI-R)*

Severe Most

severe

Least

severe

Verbal/communication

(ADI-R, Vineland II)*

Severe Most

severe

Least

severe

Repetitive behavior

(ADI-R)*

Most

severe

Severe Least

severe

ASD severity (ADOS) Severe Most

severe

Least

severe

ASD diagnostic

subgroup (DSM-IV)

Asperger Autistic

disorder

PDD-NOS

Cognitive Level (VIQ,

NVIQ, FSIQ)*

Highest Lowest High

Language regression

(\ year 3)*

Least

frequent

Most

frequent

Frequent

Parents

SRS—Mother Least

severe

Most

severe

Severe

BAPQ (autism)—Mother Severe Most

severe

Least

severe

BAPQ (traits)—Mother Severe Most

severe

Least

severe

* Comparison is significant, as determined by univariate ANOVA test

between the three clusters
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dataset (52 out of the 63 used previously in addition to 10

new boys) but with different research methodology. Key

methodology differences are geodesic rather than Euclid-

ean distance measurements, multiple clustering techniques

versus principal component analysis; and two additional

landmark points that further define measurements of facial

height. In this study, we base our cluster separation deci-

sion solely on the ASD group in contrast to Aldridge et al.,

which includes separation from the control group as part of

the cluster decision process. This report provides further

evidence that the cluster results are strong, with a high

degree of compactness and separateness not as easily

appreciated as in the initial study. It is gratifying that both

studies identified basically the same severe autism sub-

group (Cluster 2 or Subgroup 1); characterized by severe

ADI-R scores, low cognitive and functional IQ scores,

highest maternal SRS scores and significant language

regression. It is interesting to note that only 6 of the 12

boys identified by Aldridge et al. as belonging to the severe

autism group (Subgroup 1) were included in our current

study population. Based on our cluster analysis results, 5 of

these 6 boys were included in our severe autism group

(Cluster 2). Hence, both studies indicate that boys with

ASD have altered development of their facial structure. In

terms of Euclidean distance measurements, Aldridge et al.

describes the severe autism subgroup with a decreased

height of the facial midline and increased breadth of the

mouth as well as the length and height of the chin. It is

known that distance along the surface between two land-

mark points is not equivalent to the Euclidean distance

between these points. Our findings indicate that cluster 2,

our severe autism cluster, is characterized by an overall

increased facial surface height measurements (with the

exception of decreased mid-face height), and larger mouth

widths compared to the measurements in individuals in

clusters 1 and 3. This describes a longer face along the

surface. Both studies indicate that distance measurements

that describe decreased height of facial midline and long

mouth widths are key biological traits for the severe autism

group. This study demonstrates the generalization of facial

phenotypes as a viable biomarker for identifying ASD

subgroups, independent of measurement type (Euclidean

vs. Geodesic) or cluster technique.

Our findings also indicate a strong association between

language regression and cognitive performance, as indi-

cated by IQ scores of cluster 2 as well as the entire study

population. According to Table 7, 27 % of our study

population has experienced language regression, which is

consistent with the composition studied in literature about

language regression in ASD (Jones and Campbell 2010). A

pairwise comparison of the mean IQ scores in all three

categories (VIQ, NVIQ, and FSIQ) between the regressed

group and the non-regressed group (Table 8) reveals that

the regressed group has significantly much lower IQ scores.

Regression is a relatively common phenomenon in many

pediatric neurologic disorders and has been linked to

genetic diagnoses (Miles 2011). Though several reports

have suggested that the eventual outcome in children with

regression is that of a lower language level, lower IQ and

lower adaptive level compared with those who do not

regress, other studies have found no difference in outcome

(Baird et al. 2008). Baird et al. found children with broad

ASD diagnoses showed greater symptom severity in the

presence of some language regression versus no regression.

The outcomes from our study provide additional substan-

tiation in support of a statistical correlation between lan-

guage regression and cognitive performance.

Our findings also provide additional evidence that

macrocephaly is an independent autism specific feature of

autism. Head size results presented confirms that clusters

are not related to macrocephaly, which is a relatively non-

specific finding in autism (Miles et al. 2000). Importantly,

lack of association of head size with the clusters clearly

indicates that brain and head growth are not the cause of

the facial phenotypes.

The primary limitation of this study was the relatively

small size and lack of some clinical data. Primary strength

was the participation of mathematical and statistical sci-

entists who designed a statistical approach that confirmed

the validity of the cluster methodology.

Conclusion

Using comprehensive cluster analysis techniques, facial

surface measurements were investigated in a cohort of 62

eight to twelve year old boys with essential ASD. Our

results validate and extend the work of Aldridge et al.

(2011) which showed for the first time that facial mor-

phology differed significantly between groups of boys with

ASD and matched controls and that subsets with distinctive

facial morphology could be identified. Moreover, by using

similar but different clustering methods, we also identified

a comparable subset of boys with a classical autistic dis-

order phenotype characterized by lower IQs and Vineland

Adaptive behavior scores, severe autism symptoms mea-

sured by gold standard autism diagnostic measures (ADI-R

and ADOS), and more than twice likelihood of early lan-

guage regression.

Based on these two studies, we assert that facial struc-

ture, based on 31 geodesic facial distances, should be

considered a potentially useful biomarker to separate out a

biologically discrete and homogeneous ASD subset for

further study. This may help predict disorder severity and

regression and has translational relevance as this ASD

subset may represent genetically distinct individuals for
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whom specific treatment options may be tailored. Three

dimensional facial imaging, which can be acquired with

commercially available 3 dimensional systems already

located in many university based tertiary care hospitals,

should become a feasible autism biomarker with which to

delineate homogeneous populations.
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