13 research outputs found

    Physico-chemical Characterization Of The Inclusion Complex Between A 2-propen-1-amine Derivative And β-cyclodextrin

    Get PDF
    Inclusion complexes and physical mixtures were prepared with isomeric mixture of E/Z (50:50) of 3-(4′-bromo-[1,1′-biphenyl]-4-yl)-3-(4- bromophenyl)-N,N-dimethyl-2-propen-1-amine (BBAP) and β-cyclodextrin (β-CD) in different proportions. In this study, theoretical calculations using Molecular Mechanics MM+ force field were applied to predict the structures of the inclusion complexes formed by interaction of BBAP and b-cyclodextrin. Circular dichroism, differential thermal analysis (DTA), X-ray diffraction and 13C CP/MAS NMR methods were used to characterize the inclusion complexes and provide information about the stoichiometry of the inclusion complexes. The combined spectroscopy techniques indicate the formation of a complex of BBAP/β-CD in the molar proportion of 1:1 and 1:2 by co-evaporation and no complexation was detected in the physical mixture of the compounds. © 2006 Sociedad Chilena de Química β-.503115127Bibby, D.C., Davies, N.M., Tucker, I.G., (2000) Int. J. Pharm., 197, p. 1Connors, K.A., (1995) J. Pharm. Sci., 84, p. 843Connors, K.A., Paulson, A., Toledo-Velasquez, D.J., (1988) J. Org. Chem., 53, p. 2123Dollo, G., Le Corre, P., Chollet, M., Chevanne, F., Bertault, M., Burgot, J.-L., Le Verge, R., (1999) J. Pharm. Sci., 88, p. 889Mucci, A., Schenetti, L., Vandelli, M.A., Ruozi, B., Forni, F., (1999) J. Chem. Research, (S), p. 414Keipert, S., Fedder, J., Bohm, A., Hanke, B., (1996) Int. J. Pharm., 142, p. 153Nigam, S., Durocher, G., (1999) J. Photochem. Photobiol. A: Chem., 103, p. 143De Souza, A.O., Sato, D.N., Aily, D.C.G., Duran, N., (1998) J. Antimicrob. Chemother., 42, p. 407Pereira, D.G., De Castro, S.L., Durán, N., (1998) Acta Tropica, 69, p. 205De Souza, A.O., Santos Júnior, R.R., Ferreira-Júlio, J.F., Rodrigues, J.A., Melo, P.S., Haun, M., Sato, D.N., Durán, N., (2001) Eur. J. Med. Chem., 36, p. 843De Souza, A.O., Hemerly, F.P., Busollo, A.C., Melo, P.S., Machado, G.M.C., Miranda, C.C., Santa-Rita, R.M., Durán, N., (2002) J. Antimicrob. Chemother., 50, p. 629De Conti, R., Gimenez, S.M.N., Haun, M., Pilli, R.A., De Castro, S.L., Durán, N., (1996) N. Eur. J. Med. Chem., 31, p. 915De Azevedo, M.B.M., Alderete, J.B., Lino, A.C.S., Loh, W., Faljoni-Alario, A., Durán, N., (2000) J. Incl. Phenom. Macrocyclic. Chem., 37, p. 67Zhou, D., Wu, Y., Xu, Q., Yang, L., Bai, C., (2000) Z. Tan. J. Incl. Phenom. Macrocyclic. Chem., 37, p. 273Ammar, H.O., Ghorab, M., El-Nahhas, S.A., Emara, I.H., Makram, T.S., (1999) Pharmazie, 54, p. 142Muñoz De La Pena, A., Ndou, T.T., Zung, J.B., Warner, I.M., (1991) J. Phys. Chem., 95, p. 3330Smith, V.K., Ndou, T.T., Warner, I.M., (1994) J. Phys. Chem., 98, p. 8627Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., Pérez-Maseda, C., (2000) Anal. Chim. Acta, 407, p. 233Ohashi, M., Kasatani, K., Shinohara, H., Sato, H., (1990) J. Am. Chem. Soc., 112, p. 5824Harata, K., Uedaria, H., (1975) Bull. Chem. Soc. Jpn., 48, p. 375Schellman, J.A., (1968) Acc. Chem. Res., 1, p. 144Bettinetti, G.P., Gonzzaniga, A., Mura, P., Giordano, F., Setti, M., (1992) Drug Dev. Ind. Pharm., 18, p. 39Mura, P.P., Faucci, M.T., Parrini, P.L., Furlanetto, S., Pinzauti, S., (1999) Int. J. Pharm., 179, p. 117Cunha-Silva, L., Teixeira-Dias, J.J.C., (2002) J. Phys. Chem., 106, p. 3323Lai, S., Locci, E., Piras, A., Porcedda, S., Lai, A., Marangiu, B., (2003) Carbohydr. Res., 338, p. 222

    Structure-activity Relationship Analysis Of 4'-bromo-[1,1'-biphenyl]-4- Yl 4-x-phenyl Methanone Derivatives And Activity Against Mycobacterium Tuberculosis

    No full text
    Principal Component Analysis (PCA) and Artificial Neural Network (ANN) were used to analyze the relationship between the structure and the activities of a series of nine biphenylphenyl methanone derivatives against Mycobacterium tuberculosis in vitro. Both PCA and ANN were able to classify these derivatives in two categories: low active and highly active compounds. Empirical and theoretical descriptors were used in the classification process. The descriptors selected by PCA indicated that the reactivity plays an important role in the determination of antimycobacterial activity of biphenylphenyl methanone derivatives (BPM). The BPM showed a moderate activity against the M. tuberculosis strain tested with the exception of chloride-, bromide- and nitroderivatives (when X = Cl, Br, NO2) which were the most actives against M. tuberculosis in vitro among all the methanones studied.491210251029(1998) The World Health Report, , World Health Organization, Geneva, SwitzerlandRastogi, N., Labrousse, V., Seng Goh, K., (1996) Curr. Microbiol., 33, p. 167De Conti, R., Gimenez, S.M.N., Haun, M., (1996) Eur. J. Med. Chem., 31, p. 1Collins, L.A., Franzblau, S.G., (1997) Antimicrob. Agents Chemother., 41, p. 1004Wold, S., Esbensen, K., Geladi, P., (1987) Chem. Intelligent Lab. Sys., 2, p. 37De Souza, A.D., Alderete, J.B., Sato, D.N., (1998) Proc. 14th Int. Conference Phys. Org. Chem., 14, p. 184. , Florianopolis, S.C., BrazilCosta, M.C.A., Gaudio, A.C., Takahata, Y., (1997) J. Mol Struct. (Theochem), 394, p. 291Hansch, C., Leo, A., Hoeckman, D., (1995) ACS Professional Reference Book, pp. 217-304. , Exploring QSAR, Washington, DCKarelson, K., Lobanov, V.S., Katritzky, A.R., (1996) Chem. Ber., 96, p. 1027Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., (1985) J. Am. Chem. Soc., 107, p. 3902Gough, K.M., Belohorcova, K., Kaiser, K.L.E., (1994) Sci. Total. Environm., 142, p. 179Schalkoff, R., (1992) Pattern Recognition Statistical, Structural and Neural Approaches, , John Wiley & Sons, New YorkOinuma, H., Miyake, K., Yamanaka, M., (1988) J. Med. Chem., 33, p. 905Isu, Y., Nagashima, U., Aoyama, T., (1996) J. Chem. Inform. Comp. Sci., 36, p. 286Parr, R.G., Pearson, R.G., (1983) J. Am. Chem. Soc., 105, p. 7512Brown, R.E., Simas, A.M., (1982) Theor. Chim. Acta, 62, p. 1Abraham, M.H., Mc Gowan, J.C., (1987) Chromatografia, 23, p. 243Cartier, A., Rivail, J.L., (1987) Chem. Intelligent Lab. Sys., 1, p. 335Stewart, J.J.P., (1996) MOPAC 6.0 Manual, , Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, CODanon, Y., WinNN 0.97 Program, , copyright 1993-1995Yajko, D.M., Madej, J.J., Lancaster, M.V., (1995) J. Clin. Microbiol., 33, p. 2324Aoyama, T., Suzuki, Y., Ichikawa, H., (1990) J. Med. Chem., 33, p. 2583Ahmed, S.A., Gogal, R.M., Walsh, J.E., (1994) J. Immunol. Meth., 170, p. 211Klopman, G., Fercu, D., Jacob, J., (1996) J. Chem. Phys., 204, p. 181Karash, N., Terzioglu, N., GĂĽrsoy, A., (1998) Arzneim.-Forsch./Drug Res., 48 (2), p. 75

    Violacein/β-cyclodextrin Inclusion Complex Formation Studied By Measurements Of Diffusion Coefficient And Circular Dichroism

    No full text
    The formation of inclusion compounds between violacein and β-cyclodextrin was studied by diffusion and circular dichroism measurements. The present work was undertaken to explore the feasibility of the β-cyclodextrin in reducing the toxicity and enhancing the antitumoral efficacy of violacein by forming an inclusion complex. The results of the two experiments are in good agreement, suggesting the formation of 1 : 1 and 1 : 2 complexes. The diffusion coefficient measurements enabled estimates of the sizes of the complexes involved. From the circular dichroism and computational calculations it was possible to view a preference for inclusion of the most polar part of the molecule to form a 1 : 2 inclusion complex. We expect that this work proves the potential of these techniques to determining complex stoichiometry.3701/04/156774Bortolus, P., Monti, S., (1996) Advances in Photochemistry, 21, p. 1. , D. C. Neckers, D. H. Volman and G. von Bün Wiley-Interscience, New YorkLipkowitz, K.B., (1998) Chem. Rev., 98, p. 1829Dekharsky, M.V., Inoue, Y., (1998) Chem. Rev., 98, p. 1875Saenger, W., (1980) Angew. Chem. Int. Ed. Engl., 19, p. 344Parker, D., Kataky, R., (1997) J. Chem. Soc., Chem. Commun., 2, p. 141Connors, K.A., (1997) Chem. Rev., 97, p. 1325Stella, V.J., Rajewski, R.A., (1997) Pharm. Res., 14, p. 556Koehler, G., Grabner, G., Klein, C.T.H., Marconi, G., Mayer, B., Monti, S., Rechthaler, K., Wolschann, P., (1996) J. Incl. Phenom. Mol. Recognit. Chem., 25, p. 103Beezer, A.E., Mitchell, J.C., (1992) Andrews: Pestic. Sci., 35, p. 375Loh, W., Beezer, A.E., Mitchell, J.C., (1994) Lagmuir, 10, p. 3431Lino, A.C.S., Loh, W., J. Incl. Phenom. Mol. Recognit. Chem., p. 1998. , submittedCohen, A.G.Y., (1997) J. Org. Chem., 62, p. 120Li, M.-X., Li, N.-Q., Gu, Z.-N., Zhou, N.-H., Sun, Y.-L., Wu, Y.-Q., (1996) Electrochim. Acta., 41, p. 2877Manzanares, M.I., Solis, V., De Rossi, R.H., (1996) J. Electroanal. Chem., 407, p. 141Uekama, K., Otagiri, M., Kanie, Y., Tanaka, S., Ikeda, K., (1975) Chem. Pharm. Bull., 23, p. 1421Nakahara, H., Tanaka, H., Kukuda, K., Matsumoto, M., Tagaki, W., (1990) Thin Solid Films, p. 284Guo, R., Chang, J., Lin, S., Chen, R., Hu, J., Zhang, H., (1996) Guangpuxue Yu Guangpu Fenxi., 16, p. 38(1994) Chem. Abstr., 125, p. 86074Hamai, S., (1997) J. Incl. Phenom. Mol. Recognit. Chem., 27, p. 57Mayer, B., Marconi, G., Klein, C., Köhler, G., Wolschann, P., (1997) J. Incl. Phenom. Mol. Recognit. Chem., 29, p. 79Marconi, G., Mayer, B., (1997) Pure Appl. Chem., 69, p. 779Wu, Y., Jin, J., (1966) Sichuan Daxue Xuebao, Ziran Kexueban., 33, p. 560(1997) Chem. Abstr., 126, p. 317579Shen, X., Belletête, M., Durocher, G., (1998) J. Phys. Chem. B, 102, p. 1877Harada, A., Lin, J., Kamachi, M., (1992) Nature, 356, p. 325Harada, A., Lin, J., Kamachi, M., (1994) Nature, 370, p. 126Durán, N., Faljoni-Alario, A., (1980) An. Acad. Brasil. Ciên., 52, p. 287Rettori, D., Durán, N., (1998) World J. Microbiol. Biotechnol., 14, p. 685Haun, M., Pereira, M.F., Hoffmann, M.E., Riveros, R., Joyas, A., Campos, V., Durán, N., (1992) Biol. Res., 25, p. 21Durán, N., Antônio, R.V., Haun, M., Pilli, R.A., (1994) World J. Microbiol. Biotechnol., 10, p. 686Durán, N., Erazo, S., Campos, V., (1983) An. Acad. Brasil. Ciênc., 55, p. 231(1984) Chem. Abstr., 100, pp. 48417bDurán, N., Melo, P.S., Haun, M., (1996) Proc. XXV Annual Meeting Brazilian Biochemical Society, p. 150. , (Escritorio & Editorial, São Paulo, S.P., Brazil), Caxambu, M.G., Brazil O-24Durán, N., Melo, P.S., Haun, M., Proc. VIII Brazilian National Meeting in Virology, p. 1996. , (Brazilian Soc. Virology Publ., UNESP, Jaboticabal, S. P., Brazil), São Lourenço, M.G., BrazilMelo, P.S., Haun, M., Durán, N., (1997) FASEB J., 11 (SUPPL.), pp. A1418Durán, N., Haun, M., Brazilian Patent PI 9702918 (1997)Singh, U.V., Udupa, N., (1997) Indian J. Physiol. Pharmacol., 41, p. 171Singh, U.V., Udupa, N., (1997) Pharm. Sci., 3, p. 573Loh, W., Tonegutti, C.A., Volpe, P.L.O., (1993) J. Chem. Soc. Faraday Trans., 89, p. 113Akizadeth, A., Nieto De Castro, C.A., Wakeham, W.A., (1980) Int. J. Thermophys., 1, p. 243Price, W.E., Trickett, R.A., Harris, K.R., (1989) J. Chem. Soc. Faraday Trans. 1, 85, p. 3281Eastel, A.E., Woolf, L.A., (1989) J. Chem. Soc. Faraday Trans. 1, 80, p. 1287Noulty, R.A., Leaist, D.G., (1987) J. Chem. Eng. Data, 32, p. 418Grabner, G., Monti, S., Marconi, G., Mayer, B., Klein, C., Köhler, G., (1996) J. Phys. Chem., 100, p. 2006

    Characterisation And Properties Of The Inclusion Complex Of 24-epibrassinolide With β-cyclodextrin

    No full text
    This paper reports the first study of an inclusion complex of a brassinosteroid with β-cyclodextrin. The formation of inclusion complexes between 24-epibrassinolide and β-cyclodextrin was confirmed by their physicochemical properties and the compounds were analysed by differential scanning calorimetry, powder X-ray diffraction, nuclear magnetic resonance spectrometry and scanning electron microscopy. Theoretical calculations using the MM+ HyperChem force field showed a preference for inclusion of the side chain of the epibrassinolide molecule into the β-cyclodextrin cavity to form a 1:1 inclusion complex, although complexes involving inclusion of the steroidal nucleus also possess a favourable interaction energy. Rice lamina inclination assay, employing IAC-103 and IAC-104 cultivars, showed an improved activity for the epibrassinolide-cyclodextrin complex compared to the epibrassinolide itself. The results suggest that brassinosteroid complexation with cyclodextrins may enhance the biological activity of these plant growth regulators.373233240Ahmed, S.M., Improvement of solubility and dissolution of 19-norprogesterone via inclusion complexation (1998) J. Inclusion Phenom. Mol. Rec. Chem., 30, pp. 111-125Alberts, E., Muller, B.W., Complexation of steroid-hormones with cyclodextrin derivatives. Substituent effects of the guest molecule on solubility and stability in aqueous-solution (1992) J. Pharm. Sci., 81, pp. 756-761Braun, P., Wild, A., The influence of brassinosteroids on growth and parameters of photosynthesis of wheat and mustard plants (1984) J. Plant Physiol., 116, pp. 189-196Brutti, C., Apostolo, N.M., Ferrerotti, S.A., Llorente, B.E., Krymkiewicz, N., Micropropagation of Cynara scolymus L. employing cyclodextrins to promote rhizogenesis (2000) Sci. Hortic., 83, pp. 1-10Clouse, S.D., Sasse, J.M., Brassinosteroids: Essential regulators of plant growth and development (1998) Annual Rev. Plant Physiol. Plant Molec. Biol., 49, pp. 427-451Connors, A., The stability of cyclodextrin complexes in solution (1997) Chem. Rev., 97, pp. 1325-1357Cutler, H.G., Yokota, T., Adam, G., (1991) Brassinosteroids: Chemistry, Bioactivity and Applications, ACS Symposium Series, 474. , American Chemical Society, Washington, DCDe Azevedo, M.B.A., Alderete, J.B., Lino, A.C.S., Loh, W., Faljoni-Alario, A., Durán, N., Violacein/β-cyclodextrin inclusion complex formation studied by measurements of diffusion coefficient and circular dichroism (2000) J. Incl. Phenom. Macrocyclic Chem., 37, pp. 67-74De Azevedo, M.B.M., Alderete, J., Zullo, M.A.T., Salva, T.J.G., Duran, N., Brassinosteroids: A new class of plant hormones. The biological activity of 24-epibrassinolide and an inclusion complex of 24-epibrassinolide and β-cyclodextrin (2000) Proceed. Int'l Control. Rel. Bioact. Mater., pp. 5006-5007. , Controlled Release Society, IncDurán, N., De Azevedo, M.B.M., Zullo, M.A.T., Salva, T.J.G., Alderete, J.B., (2000), Process of cyclodextrin/brassinosteroids formulation, for agricultural application, used as plant hormones, Brazilian Patent BR9906202-ADurzan, D.J., Ventimiglia, F.F., (2000), Cyclodextrin nutrients in plant tissue cultures, US Patent US 6087176 [Chem. Abstr. 133: 88976 (2000)]Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., Activity of brassinosteroids in the dwarf rice lamina inclination bioassay (1998) Phytochemistry, 49, pp. 1841-1848Fujioka, S., Sakurai, A., Biosynthesis and metabolism of brassinosteroids (1997) Physiol. Plant., 100, pp. 710-715Gosset, S., Gauvrit, C., (1992), Activity enhancement of benzamide herbicides by cyclodextrins. French 9222204 A1 [Chem. Abstr. 118: 75387 (1997)]Hayashi, T., Iijima, Y., Hoshino, A., Nakamura, M., (1998), Agents and method for flowering acceleration using cinnamic acid-cyclodextrin inclusion compounds Japanese Patent. Kokai Tokkyo Koho JP 10273404 A2 [Chem. Abstr. 129: 327304 (1999)]Huet, H., Jullien, M., The β-cyclodextrins delay the germination of the somatic embryos of carrot (Daucus carota L.) (1992) Acad. Sci., Ser. III, 314, pp. 171-177Ikekawa, N., Zhao, Y., Application of 24-epibrassinolide in agriculture (1991) Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symposium Series, 474, pp. 280-305. , Cutler H.G., Yokota T. and Adam G. (eds). American Chemical Society, Washington, DCKalinch, F.N., Mandava, N.B., Todhunter, J.A., Relationship of nucleic acid metabolism to brassinolide-induced responses in bean (1985) J. Plant Physiol., 120, pp. 207-214Khripach, V.A., Zhabinskii, V.N., De Groot, A.E., (1999) Brassinosteroids, A New Class of Plant Hormones, , Academic Press, Harcourt Brace & Company, USAKoehler, G., Grabner, G., Klein, C.T.H., Marconi, G., Mayer, B., Monti, S., Structure spectroscopic properties of cyclodextrin inclusion complexes (1996) J. Inc. Phenom. Mol. Rec. Chem., 25, pp. 103-108Lipkowitz, K.B., Applications of computational chemistry to the study of cyclodextrins (1998) Chem. Rev., 98, pp. 1829-1873Mandava, N.B., Plant growth promoting brassinosteroids (1988) Ann. Rev. Plant Physiol. Plant Mol. Biol., 39, pp. 23-52Marquart, V., Adam, G., Recent advances in brassinosteroids research (1991) Chemistry of Plant Protection, Herbicide Resistance - Brassinosteroids, Gibberellins, Plant Growth Regulators, 7, pp. 104-139. , Ebing W. (ed.). Springer-Verlag, BerlinMarzona, M., Carpignano, R., Quagliotto, P., Quantitative structure-stability relationships in the inclusion complexes of steroids with cyclodextrins (1992) Annal. Di Chim., 82, pp. 517-537Okii, M., (1993), Cyclodextrins for enhanced callus tissue culture of rice Japanese Patent. Kokai Tokkyo Koho JP 05292955 A2 [Chem. Abstr. 120: 1324504 (1997)]Rajagopalan, N., Chen, S.C., Chow, W.S., A study of the inclusion complex of amphotericin-B with cyclodextrin (1986) Int. J. Pharm., 29, pp. 161-168Sairam, P.K., Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties (1994) Plant Growth Regul., 14, pp. 173-181Sakurai, A., Fujioka, S., The current status of physiology and biochemistry of brassinosteroids (1993) Plant Growth Regul., 13, pp. 147-159Sasse, J.M., Recent progress in brassinosteroid research (1997) Physiol. Plant., 100, pp. 696-701Sawamoto, T., (2000), Plant growth-stimulating and disease-preventing agents containing 1-triacontanol and their manufacture Japanese Patent 2000128707 A2 [Chem. Abstr. 132:304657]Stella, V.J., Rajewski, R.A., Cyclodextrins: Their future in drug formulation and delivery (1997) Pharm. Res., 14, pp. 556-567Stella, V.J., Rao, V.M., Zannou, E.A., Zia, V., Mechanisms of drug release from cyclodextrin complexes (1999) Adv. Drugs Del. Rev., 36, pp. 3-16Szejtli, J., Szente, L., Harshegyi, J., Daroczi, I., Vorashazy, L., Torok, S., (1989), Inclusion complexes and mixtures of plant growth regulators with cyclodextrins., Hung. Patent Teljes HU 47961 A2 [Chemical Abstracts 112: 50398 (1997)]Takeno, K., Pharis, R.P., Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: An auxin-mediated phenomenon (1982) Plant Cell Physiol., 23, pp. 1275-1281Uden, W.V., Woerdenbag, H.J., Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology (1994) Plant Cell Tissue Organ Cult., 38, pp. 103-113Vardhini, B.V., Rao, S.S.R., Effect of brassinosteroids on nodulation and nitrogenase activity in groundnut Arachis hypogaea L. (1999) Phytochemistry, 48, pp. 927-930Wada, K., Marumo, S., Abe, H., Morishita, T., Nakamura, K., Uchiyama, M., A rice lamina inclination test - A micro-quantitative bioassay for brassinosteroids (1984) Agric. Biol. Chem., 48, pp. 719-726Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., Mori, K., Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings (1981) Plant Cell Physiol., 22, pp. 323-326Zhou, D., Wu, Y., Xu, Q., Yang, L., Bai, C., Tan, Z., Molecular mechanics study of the inclusion of trimethylbenzene isomers in α-cyclodextrin (2000) J. Inc. Phenom. Macrocyclic Chem., 37, pp. 273-27

    Colorectal Cancer Chemoprevention By 2 β-cyclodextrin Inclusion Compounds Of Auraptene And 4′-geranyloxyferulic Acid

    No full text
    The inhibitory effects of novel prodrugs, inclusion complexes of 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid (GOFA) and auraptene (AUR) with b-cyclodextrin (CD), on colon carcinogenesis were investigated using an azoxymethane (AOM)/ dextran sodium sulfate (DSS) model. Male CD-1 (ICR) mice initiated with a single intraperitoneal injection of AOM (10 mg/kg body weight) were promoted by the addition of 1.5% (w/v) DSS to their drinking water for 7 days. They were then given a basal diet containing 2 dose levels (100 and 500 ppm) of GOFA/β-CD or AUR/β-CD for 15 weeks. At Week 18, the development of colonic adenocarcinoma was significantly inhibited by feeding with GOFA/β-CD at dose levels of 100 ppm (63% reduction in multiplicity, p < 0.05) and 500 ppm (83% reduction in the multiplicity, p < 0.001), when compared with the AOM/DSS group (multiplicity: 3.36 ± 3.34). In addition, feeding with 100 and 500 ppm (p < 0.01) of AUR/b-CD suppressed the development of colonic adenocarcinomas. The dietary administration with GOFA/β-CD and AUR/β-CD inhibited colonic inflammation and also modulated proliferation, apoptosis and the expression of several proinflammatory cytokines, such as nuclear factor-kappaB, tumor necrosis factor-α, Stat3, NF-E2-related factor 2, interleukin (IL)-6 and IL-1β, which were induced in the adenocarcinomas. Our findings indicate that GOFA/β-CD and AUR/β-CD, especially GOFA/β-CD, are therefore able to inhibit colitis-related colon carcinogenesis by modulating inflammation, proliferation and the expression of proinflammatory cytokines in mice. © 2009 UICC.1264830840Parkin, D.M., Bray, F., Ferlay, J., Pisani, P., Global cancer statistics, 2002 (2005) CA Cancer J Clin, 55, pp. 74-108(2006) Cancer fact sheet, (297). , WHO Media Center, WHOTanaka, T., Colorectal carcinogenesis: Review of human and experimental animal studies (2009) J Carcinog, 8, p. 5Balkwill, F., Mantovani, A., Inflammation and cancer: Back to Virchow? (2001) Lancet, 357, pp. 539-545Rubin, D.T., Parekh, N., Colorectal cancer in inflammatory bowel disease: Molecular and clinical considerations (2006) Curr Treat Options Gastroenterol, 9, pp. 211-220Tanaka, T., Kohno, H., Murakami, M., Shimada, R., Kagami, S., Colitis-related rat colon carcinogenesis induced by 1-hydroxy-anthraquinone and methylazoxymethanol acetate (review) (2000) Oncol Rep, 7, pp. 501-508Tanaka, T., Kohno, H., Suzuki, R., Yamada, Y., Sugie, S., Mori, H., A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate (2003) Cancer Sci, 94, pp. 965-973Suzuki, R., Kohno, H., Sugie, S., Nakagama, H., Tanaka, T., Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice (2006) Carcinogenesis, 27, pp. 162-169Suzuki, R., Kohno, H., Sugie, S., Tanaka, T., Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate (2004) Cancer Sci, 95, pp. 721-727Suzuki, R., Miyamoto, S., Yasui, Y., Sugie, S., Tanaka, T., Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate (2007) BMC Cancer, 7, p. 84Kohno, H., Suzuki, R., Curini, M., Epifano, F., Maltese, F., Gonzales, S.P., Tanaka, T., Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitisrelated colon carcinogenesis in mice (2006) Int J Cancer, 118, pp. 29336-29342Kohno, H., Suzuki, R., Yasui, Y., Miyamoto, S., Wakabayashi, K., Tanaka, T., Ursodeoxycholic acid versus sulfasalazine in colitis-related colon carcinogenesis in mice (2007) Clin Cancer Res, 13, pp. 2519-2525Kohno, H., Suzuki, R., Sugie, S., Tanaka, T., Beta-catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate (2005) Cancer Sci, 2005, pp. 69-76Tanaka, T., Suzuki, R., Kohno, H., Sugie, S., Takahashi, M., Wakabayashi, K., Colonic adenocarcinomas rapidly induced by the combined treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate in male ICR mice possess beta-catenin gene mutations and increases immunoreactivity for betacatenin, cyclooxygenase-2 and inducible nitric oxide synthase (2005) Carcinogenesis, 26, pp. 229-238Tanaka, T., Kohno, H., Suzuki, R., Hata, K., Sugie, S., Niho, N., Sakano, K., Wakabayashi, K., Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: Inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms (2006) Int J Cancer, 118, pp. 25-34Ohshima, H., Tazawa, H., Sylla, B.S., Sawa, T., Prevention of human cancer by modulation of chronic inflammatory processes (2005) Mutat Res, 591, pp. 110-122D'Inca, R., Cardin, R., Benazzato, L., Angriman, I., Martines, D., Sturniolo, G.C., Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia (2004) Inflamm Bowel Dis, 10, pp. 23-27Papadakis, K.A., Targan, S.R., Role of cytokines in the pathogenesis of inflammatory bowel disease (2000) Annu Rev Med, 51, pp. 289-298Rutgeerts, P., Vermeire, S., Van Assche, G., Biological therapies for inflammatory bowel diseases (2009) Gastroenterology, 136, pp. 1182-1197Tanaka, T., Yasui, Y., Ishigamori-Suzuki, R., Oyama, T., Citrus compounds inhibit inflammation- and obesity-related colon carcinogenesis in mice (2008) Nutr Cancer, 60 (SUPPL. 1), pp. 70-80Tanaka, T., Yasui, Y., Tanaka, M., Oyama, T., Rahman, K.M., Melatonin suppresses AOM/ DSS-induced large bowel oncogenesis in rats (2009) Chem Biol Interact, 177, pp. 128-136Kohno, H., Suzuki, R., Curini, M., Epifano, F., Maltese, F., Gonzales, S.P., Tanaka, T., Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitisrelated colon carcinogenesis in mice (2006) Int J Cancer, 118, pp. 2936-2942Miyamoto, S., Epifano, F., Curini, M., Genovese, S., Kimi, M., Ishigamori-Suzuki, R., Yasui, Y., Tanaka, T., A novel prodrug of 40-geranyloxy-ferulic acid suppresses colitis-related colon carcinogenesis in mice (2008) Nutr Cancer, 60, pp. 675-684Loftsson, T., Duchêne, D., Cyclodextrins and their pharmaceutical applications (2007) Int J Pharm, 329, pp. 1-11De Azevedo, M.B.M., Alderete, J.B., Lino, A.C.S., Loh, W., Faljoni-Alario, A., Duran, N., Violacein/b-cyclodextrin inclusion complex formation studied by measurements of diffusion coefficient and circular dichroism (2000) J Inclusion Phenom Macrocycl Chem, 37, pp. 67-74De Azevedo, M.B.M., Correa, D.H.A., Carvalho, C.A.A., Haun, M., Duran, N., Melo, P.S., Dehydrocrotonin and its b-cyclodextrin complex: Cytotoxicity in V79 fibroblasts and rat cultured hepatocytes (2005) Eur J Pharmacol, 510, pp. 17-24De Azevedo, M.B.M., Melo, P.S., Justo, G.Z., Duran, N., Haun, M., Violacein and its b-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells (2003) Toxicology, 186, pp. 217-225Meissner, Y., Lamprecht, A., Alternative drug delivery approaches for the therapy of inflammatory bowel disease (2008) J Pharm Sci, 97, pp. 2878-2891Curini, M., Epifano, F., Genovese, S., Marcotullio, M.C., Menghini, L., 3-(40-Geranyloxy-30-Methoxyphenyl)-2-trans propenoic acid: A novel promising cancer chemopreventive agent (2006) Anticancer Agents Med Chem, 6, pp. 571-577Epifano, F., Genovese, S., Curini, M., Auraptene: Phytochemical and pharmacological properties (2008) Phytochemistry research progressed. Hauppauge, pp. 145-162. , Matsumoto T, editor, NY: Nova Science PublishersSurh YJ. NF-kappa B and Nrf2 as potential chemopreventive targets of some antiinflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr 2008;17(Suppl 1):269-72Sarkar, F.H., Li, Y., NF-kappaB: A potential target for cancer chemoprevention and therapy (2008) Front Biosci, 13, pp. 2950-2959Bharti, A.C., Aggarwal, B.B., Nuclear factorkappa B and cancer: Its role in prevention and therapy (2002) Biochem Pharmacol, 64, pp. 883-888Kwon, K.H., Barve, A., Yu, S., Huang, M.T., Kong, A.N., Cancer chemoprevention by phytochemicals: Potential molecular targets, biomarkers and animal models (2007) Acta Pharmacol Sin, 28, pp. 1409-1421Aggarwal, B.B., Sethi, G., Baladandayuthapani, V., Krishnan, S., Shishodia, S., Targeting cell signaling pathways for drug discovery: An old lock needs a new key (2007) J. Cell Biochem, 102, pp. 580-592Aggarwal, B.B., Shishodia, S., Molecular targets of dietary agents for prevention and therapy of cancer (2006) Biochem Pharmacol, 71, pp. 1397-1421Sethi, G., Sung, B., Aggarwal, B.B., TNF: A master switch for inflammation to cancer (2008) Front Biosci, 13, pp. 5094-5107Atreya, R., Neurath, M.F., Signaling molecules: The pathogenic role of the IL-6/ STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer (2008) Curr Drug Targets, 9, pp. 369-374Mitsuyama, K., Matsumoto, S., Masuda, J., Yamasakii, H., Kuwaki, K., Takedatsu, H., Sata, M., Therapeutic strategies for targeting the IL-6/STAT3 cytokine signaling pathway in inflammatory bowel disease (2007) Anticancer Res, 27, pp. 3749-3756Kwon, K.H., Murakami, A., Hayashi, R., Ohigashi, H., Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis (2005) Biochem Biophys Res Commun, 337, pp. 647-654Kim M, Miyamoto S, Yasui Y, Oyama T, Murakami A, Tanaka T. Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int J Cancer 2009;124:264-71Watson, A.J., An overview of apoptosis and the prevention of colorectal cancer (2006) Crit Rev Oncol Hematol, 57, pp. 107-121Curini, M., Epifano, F., Genovese, S., Synthesis of a novel prodrug of 3-(40-geranyloxy-30-methoxyphenyl)-2-trans-propenoic acid for colon delivery (2005) Bioorg Med Chem Lett, 15, pp. 5049-5052Curini, M., Epifano, F., Maltese, F., Marcotullio, M.C., Tubaro, A., Altinier, G., Prieto Gonzales, S., Rodriguez, J.C., Synthesis and anti-inflammatory activity of natural and semisynthetic geranyloxycoumarins (2004) Bioorg Med Chem Lett, 14, pp. 2241-2243De Azevedo, M.B.M., Alderete, J., Rodriguez, J.A., Souza, A.O., Rettori, D., Torsoni, M.A., Faljoni-Alario, A., Duran, N., Biological activities of violacein, a new antitumoral indole derivative, in an inclusion complex with beta-cyclodextrin (2000) J Inclusion Phenom Macrocycl Chem, 37, pp. 93-101De Azevedo, M.B.M., Zullo, M.A.T., Alderete, J.B., De Azevedo, M.M.M., Salva, T.J.G., Duran, N., Characterisation and properties of the inclusion complex of 24-epibrassinolide with beta-cyclodextrin (2002) Plant Growth Reg, 37, pp. 233-240Carino, S.R., Tostmann, H., Underhill, R.S., Logan, J., Weerasekera, G., Culp, J., Davidson, M., Duran, R.S., Real-time grazing incidence X-ray diffraction studies of polymerizing N-octadecyltrimethoxysilane Langmuir monolayers at the air/water interface (2001) J Am Chem Soc, 123, pp. 767-768De Azevedo, M.B.M., Duran, N., Justo, G.Z., Melo, P.S., Brito, A.R.M.S., Almeida, A.B.A., Haun, M., Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with betacyclodextrin (2003) Can J Physiol Pharmacol, 81, pp. 387-396De Souza, A.O., Alderete, J.B., Faljoni-Alario, A., Silva, C.L., Duran, N., Physico-chemical characterization of the inclusion complex between a 2-propen-1-amine derivative and beta-cyclodextrin (2005) J Chil Chem Soc, 50, pp. 591-596Ward, J.M., Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats (1974) Lab Invest, 30, pp. 505-513Yasui, Y., Suzuki, R., Miyamoto, S., Tsukamoto, T., Sugie, S., Kohno, H., Tanaka, T., A lipophilic statin, pitavastatin, suppresses inflammation-associated mouse colon carcinogenesis (2007) Int J Cancer, 121, pp. 2331-2339Lewis, A.M., Varghese, S., Xu, H., Alexander, H.R., Interleukin-1 and cancer progression: The emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment (2006) J Transl Med, 4, p. 48Lin, W.W., Karin, M., A cytokine-mediated link between innate immunity, inflammation, and cancer (2007) J Clin Invest, 117, pp. 1175-1183Yoo, S.Y., Lee, S.Y., Yoo, N.C., Cytokine expression and cancer detection (2009) Med Sci Monit, 15, pp. RA49-RA56Aggarwal, B.B., Shishodia, S., Sandur, S.K., Pandey, M.K., Sethi, G., Inflammation and cancer: How hot is the link? (2006) Biochem Pharmacol, 72, pp. 1605-1621Kohno, H., Suzuki, R., Sugie, S., Tanaka, T., Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands (2005) BMC Cancer, 5, p. 46Khor, T.O., Huang, M.T., Kwon, K.H., Chan, J.Y., Reddy, B.S., Kong, A.N., Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis (2006) Cancer Res, 66, pp. 11580-11584Atreya, R., Neurath, M.F., Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer (2005) Clin Rev Allergy Immunol, 28, pp. 187-196Hanai, H., Positions of selective leukocytapheresis in the medical therapy of ulcerative colitis (2006) World J Gastroenterol, 12, pp. 7568-7577Surh, Y.J., Na, H.K., NF-kappaB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals (2008) Genes Nutr, 2, pp. 313-317Kim, Y.S., Young, M.R., Bobe, G., Colburn, N.H., Milner, J.A., Bioactive food components, inflammatory targets, and cancer prevention (2009) Cancer Prev Res, 2, pp. 200-208Janakiram, N.B., Rao, C.V., Molecular markers and targets for colorectal cancer prevention (2008) Acta Pharmacol Sin, 29, pp. 1-20Yasui, Y., Kim, M., Tanaka, T., Colorectal carcinogenesis and suppression of tumor development by inhibition of enzymes and molecular targets (2009) Curr Enzyme Inhibit, 5, pp. 1-26Dong, M., Guda, K., Nambiar, P.R., Rezaie, A., Belinsky, G.S., Lambeau, G., Giardina, C., Rosenberg, D.W., Inverse association between phospholipase A2 and COX-2 expression during mouse colon tumorigenesis (2003) Carcinogenesis, 24, pp. 307-315Inan, M.S., Place, R., Tolmacheva, V., Wang, Q.S., Hubbard, A.K., Rosenberg, D.W., Giardina, C., IkappaBbeta-related proteins in normal and transformed colonic epithelial cells (2000) Mol Carcinog, 29, pp. 25-36Inan, M.S., Tolmacheva, V., Wang, Q.S., Rosenberg, D.W., Giardina, C., Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon (2000) Am J Physiol Gastrointest Liver Physiol, 279, pp. G1282-G1291Tong, X., Yin, L., Washington, R., Rosenberg, D.W., Giardina, C., The p50-p50 NF-kappaB complex as a stimulus-specific repressor of gene activation (2004) Mol Cell Biochem, 265, pp. 171-183Fantini, M.C., Pallone, F., Cytokines: From gut inflammation to colorectal cancer (2008) Curr Drug Targets, 9, pp. 375-380Ahn, K.S., Aggarwal, B.B., Transcription factor NF-kappaB: A sensor for smoke and stress signals (2005) Ann N Y Acad Sci, 1056, pp. 218-233Kim, M., Miyamoto, S., Sugie, S., Yasui, Y., Ishigamori-Suzuki, R., Murakami, A., Nakagama, H., Tanaka, T., A tobacco-specific carcinogen, NNK, enhances AOM/DSSinduced colon carcinogenesis in male A/J mice (2008) In Vivo, 22, pp. 557-563Kusaba, T., Nakayama, T., Yamazumi, K., Yakata, Y., Yoshizaki, A., Nagayasu, T., Sekine, I., Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma: Correlation with clinicopathological factors (2005) J Clin Pathol, 58, pp. 833-838Fenton, J.I., Hursting, S.D., Perkins, S.N., Hord, N.G., Interleukin-6 production by leptin treatment promotes cell proliferation in an Apc(Min/+) colon epithelial cell line (2006) Carcinogenesis, 27, pp. 1507-1515Li, J.H., Yu, J.P., Yu, H.G., Xu, X.M., Yu, L.L., Liu, J., Luo, H.S., Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis (2005) Mediators Inflamm, 2005, pp. 185-193Li, J.H., Zhou, W., Liu, K., Li, H.X., Wang, L., Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis (2008) Saudi Med J, 29, pp. 1088-1094Epifano, F., Genovese, S., Sosa, S., Tubaro, A., Curini, M., Synthesis and anti-inflammatory activity of 3-(4′-geranyloxy-3′-methoxyphenyl)-2- trans propenoic acid and its ester derivatives (2007) Bioorg Med Chem Lett, 17, pp. 5709-5714Tanaka, T., Kawabata, K., Kakumoto, M., Hara, A., Murakami, A., Kuki, W., Takahashi, Y., Yamane, T., Citrus auraptene exerts dose-dependent chemopreventive activity in rat large bowel tumorigenesis: The inhibition correlates with suppression of cell proliferation and lipid peroxidation and with induction of phase II drugmetabolizing enzymes (1998) Cancer Res, 58, pp. 2550-2556Boukharta, M., Jalbert, G., Castonguay, A., Biodistribution of ellagic acid and doserelated inhibition of lung tumorigenesis in A/J mice (1992) Nutr Cancer, 18, pp. 181-189Kawabata, K., Murakami, A., Ohigashi, H., Auraptene decreases the activity of matrix metalloproteinases in dextran sulfate sodium-induced ulcerative colitis in ICR mice (2006) Biosci Biotechnol Biochem, 70, pp. 3062-306
    corecore