230 research outputs found

    Velocity Correlations in Driven Two-Dimensional Granular Media

    Full text link
    Simulations of volumetrically forced granular media in two dimensions produce s tates with nearly homogeneous density. In these states, long-range velocity correlations with a characteristic vortex structure develop; given sufficient time, the correlations fill the entire simulated area. These velocity correlations reduce the rate and violence of collisions, so that pressure is smaller for driven inelastic particles than for undriven elastic particles in the same thermodynamic state. As the simulation box size increases, the effects of veloc ity correlations on the pressure are enhanced rather than reduced.Comment: 12 pages, 6 figures, 21 reference

    Simulation and experimental study of rheological properties of CeO2 – water nanofluid

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0–3.3 mPasPeer reviewedFinal Published versio

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    Hydrodynamic Long-Time tails From Anti de Sitter Space

    Full text link
    For generic field theories at finite temperature, a power-law falloff of correlation functions of conserved currents at long times is a prediction of non-linear hydrodynamics. We demonstrate, through a one-loop computation in Einstein gravity in Anti de Sitter space, that this effect is reproduced by the dynamics of black hole horizons. The result is in agreement with the gauge-gravity correspondence.Comment: 31 pages, references adde

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Exercise and cognitive function: a hypothesis for the association of type II diabetes mellitus and Alzheimer's disease from an evolutionary perspective

    Get PDF
    The association of type II diabetes mellitus (DM2) with Alzheimer's disease (AD) has received considerable attention in recent years. In the present paper, a hypothesis for this association from an evolutionary perspective, with emphasis on the close interplay between exercise and cognitive function, will be advanced in order to provide a biological rationale for the notion that the fundamental metabolic features of DM2 act in the brain over a protracted time span to induce the neuropathological characteristics of Alzheimer's disease thereby producing cognitive impairment. It is hoped that this hypothesis puts the association of DM2 and AD on firm conceptual grounds from a biological perspective and offers directions for further research

    Direct Bacterial Killing In Vitro by Recombinant Nod2 Is Compromised by Crohn's Disease-Associated Mutations

    Get PDF
    Background: A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR) domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn’s disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations. Methodology/Principal Findings: In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn’s-associated mutations. Wildtype, but not Crohn’s-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity. Conclusions/Significance: The lack of anti-bacterial activity demonstrated with Crohn’s-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphism
    • …
    corecore