12 research outputs found

    R-BERT-CNN : Drug-target interactions extraction from biomedical literature

    Get PDF
    In this research, we present our work participation for the DrugProt task of BioCreative VII challenge. Drug-target interactions (DTIs) are critical for drug discovery and repurposing, which are often manually extracted from the experimental articles. There are >32M biomedical articles on PubMed and manually extracting DTIs from such a huge knowledge base is challenging. To solve this issue, we provide a solution for Track 1, which aims to extract 10 types of interactions between drug and protein entities. We applied an Ensemble Classifier model that combines BioMed-RoBERTa, a state of art language model, with Convolutional Neural Networks (CNN) to extract these relations. Despite the class imbalances in the BioCreative VII DrugProt test corpus, our model achieves a good performance compared to the average of other submissions in the challenge, with the micro F1 score of 55.67% (and 63% on BioCreative VI ChemProt test corpus). The results show the potential of deep learning in extracting various types of DTIs.Peer reviewe

    DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal

    Get PDF
    gkab438Combinatorial therapies that target multiple pathways have shown great promises for treating complex diseases. DrugComb (https://drugcomb.org/) is a web-based portal for the deposition and analysis of drug combination screening datasets. Since its first release, DrugComb has received continuous updates on the coverage of data resources, as well as on the functionality of the web server to improve the analysis, visualization and interpretation of drug combination screens. Here, we report significant updates of DrugComb, including: (i) manual curation and harmonization of more comprehensive drug combination and monotherapy screening data, not only for cancers but also for other diseases such as malaria and COVID-19; (ii) enhanced algorithms for assessing the sensitivity and synergy of drug combinations; (iii) network modelling tools to visualize the mechanisms of action of drugs or drug combinations for a given cancer sample and (iv) state-of-the-art machine learning models to predict drug combination sensitivity and synergy. These improvements have been provided with more user-friendly graphical interface and faster database infrastructure, which make DrugComb the most comprehensive web-based resources for the study of drug sensitivities for multiple diseases.Peer reviewe

    Using BERT to identify drug-target interactions from whole PubMed

    Get PDF
    Drug-target interactions (DTIs) are critical for drug repurposing and elucidation of drug mechanisms, and are manually curated by large databases, such as ChEMBL, BindingDB, DrugBank and DrugTargetCommons. However, the number of curated articles likely constitutes only a fraction of all the articles that contain experimentally determined DTIs. Finding such articles and extracting the experimental information is a challenging task, and there is a pressing need for systematic approaches to assist the curation of DTIs. To this end, we applied Bidirectional Encoder Representations from Transformers (BERT) to identify such articles. Because DTI data intimately depends on the type of assays used to generate it, we also aimed to incorporate functions to predict the assay format.Peer reviewe

    DrugRepo: a novel approach to repurposing drugs based on chemical and genomic features

    Get PDF
    The drug development process consumes 9–12 years and approximately one billion US dollars in costs. Due to the high finances and time costs required by the traditional drug discovery paradigm, repurposing old drugs to treat cancer and rare diseases is becoming popular. Computational approaches are mainly data-driven and involve a systematic analysis of different data types leading to the formulation of repurposing hypotheses. This study presents a novel scoring algorithm based on chemical and genomic data to repurpose drugs for 669 diseases from 22 groups, including various cancers, musculoskeletal, infections, cardiovascular, and skin diseases. The data types used to design the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and disease-gene associations. The repurposed scoring algorithm is strengthened by integrating the most comprehensive manually curated datasets for each data type. At DrugRepo score ≥ 0.4, we repurposed 516 approved drugs across 545 diseases. Moreover, hundreds of novel predicted compounds can be matched with ongoing studies at clinical trials. Our analysis is supported by a web tool available at: http://drugrepo.org/.Peer reviewe

    SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets

    Get PDF
    Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The SynergyFinder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the SynergyFinder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated SynergyFinder R package includes five main innovations. 1) We extend the mathematical models to higher-order drug combination data analysis and implement dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3) We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to provide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs and cell lines, including their chemical and target information. These annotations will improve the interpretation of the mechanisms of action of drug combinations. To facilitate the use of the R package within the drug discovery community, we also provide a web server at www.synergyfinderplus.org as a user-friendly interface to enable a more flexible and versatile analysis of drug combination data.Peer reviewe

    Can We Assume the Gene Expression Profile as a Proxy for Signaling Network Activity?

    Get PDF
    Studying relationships among gene products by expression profile analysis is a common approach in systems biology. Many studies have generalized the outcomes to the different levels of central dogma information flow and assumed a correlation of transcript and protein expression levels. However, the relation between the various types of interaction (i.e., activation and inhibition) of gene products to their expression profiles has not been widely studied. In fact, looking for any perturbation according to differentially expressed genes is the common approach, while analyzing the effects of altered expression on the activity of signaling pathways is often ignored. In this study, we examine whether significant changes in gene expression necessarily lead to dysregulated signaling pathways. Using four commonly used and comprehensive databases, we extracted all relevant gene expression data and all relationships among directly linked gene pairs. We aimed to evaluate the ratio of coherency or sign consistency between the expression level as well as the causal relationships among the gene pairs. Through a comparison with random unconnected gene pairs, we illustrate that the signaling network is incoherent, and inconsistent with the recorded expression profile. Finally, we demonstrate that, to infer perturbed signaling pathways, we need to consider the type of relationships in addition to gene-product expression data, especially at the transcript level. We assert that identifying enriched biological processes via differentially expressed genes is limited when attempting to infer dysregulated pathways.Peer reviewe

    RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection

    Get PDF
    Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex). Bacterial stress responses are potential targets for new antimicrobials. Here, Avican et al. present global transcriptomes for 32 bacterial pathogens grown under 11 stress conditions, and identify common and unique regulatory responses, as well as processes participating in different stress responses.Peer reviewe

    Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments

    Get PDF
    Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.Peer reviewe

    Enhancing the Lifetime of WSN Using a Modified Ant Colony Optimization Algorithm

    No full text
    Wireless sensor networks (WSNs) have been extensively used in various fields, such as health, defense, education, and industrial applications, to collect and transmit environmental data to the base station. However, energy efficiency is a significant challenge in WSNs, as data transmission is typically limited to a single route, leading to excessive energy consumption by the nodes along that route. This can lead to a decrease in the network's overall efficiency and effectiveness. To address this issue, this study aims to extend the lifespan of WSNs by optimizing route selection based on three variables: residual node energy, distance to the base station, and number of shared neighbors. In this paper, the authors propose three systematic approaches, namely Energy-Aware ACO Routing (EACO), Cost-Effective ACO Routing (CEACO), and Cost-Efficient Node Replacement Strategies ACO (CERACO), to enhance the lifetime of WSNs. These approaches consider various factors such as cost, energy consumption, replacement, and reliability. The paper provides a practical guide for researchers and practitioners to overcome the challenges related to energy efficiency and cost-effectiveness in WSNs. Experimental results demonstrate that the first dead node occurs later with the proposed methods than with the traditional Ant Colony Optimization (ACO) algorithm.Peer reviewe
    corecore