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DrugRepo: a novel approach 
to repurposing drugs based 
on chemical and genomic features
Yinyin Wang 1, Jehad Aldahdooh 1, Yingying Hu 1, Hongbin Yang 2, Markus Vähä‑Koskela 3, 
Jing Tang 1* & Ziaurrehman Tanoli 3,4*

The drug development process consumes 9–12 years and approximately one billion US dollars in 
costs. Due to the high finances and time costs required by the traditional drug discovery paradigm, 
repurposing old drugs to treat cancer and rare diseases is becoming popular. Computational 
approaches are mainly data-driven and involve a systematic analysis of different data types leading 
to the formulation of repurposing hypotheses. This study presents a novel scoring algorithm based 
on chemical and genomic data to repurpose drugs for 669 diseases from 22 groups, including various 
cancers, musculoskeletal, infections, cardiovascular, and skin diseases. The data types used to 
design the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and 
disease-gene associations. The repurposed scoring algorithm is strengthened by integrating the most 
comprehensive manually curated datasets for each data type. At DrugRepo score ≥ 0.4, we repurposed 
516 approved drugs across 545 diseases. Moreover, hundreds of novel predicted compounds can be 
matched with ongoing studies at clinical trials. Our analysis is supported by a web tool available at: 
http://​drugr​epo.​org/.

The average cost of developing a new drug is billions of dollars, and it takes about 9–12 years to bring a new drug 
to the market1. Finding new uses for approved drugs has become a primary alternative strategy for the pharma-
ceutical industry. This practice usually referred to as drug repositioning or drug repurposing, is highly attractive 
because of its potential to speed up the process of drug development, reduce costs, and provide treatments for 
unmet medical needs2. In this regard, compounds that have passed through phases I or II in the drug discovery 
pipeline but never make it to the market due to efficacy issues carry great potential for drug repositioning. Tra-
ditionally, drug repurposing success stories have mainly resulted from opportunistic and serendipitous findings3. 
For example, sildenafil citrate was originally developed as an antihypertensive drug but later repurposed by 
Pfizer and marketed as Viagra to treat erectile dysfunction based on retrospective clinical experience, leading to 
massive worldwide sales. Other examples of such drug repositioning include cancer drugs: crizotinib, sorafenib, 
azacitidine and decitabine, all of which failed to reach the markets in their initial indications yet now are essen-
tial tools in the treatment of various types of cancers4. Over recent years, various computational resources are 
developed to support systematic drug repurposing. Popular information sources for in-silico drug repurposing 
include, for instance, electronic health records, genome-wide association analyses or gene expression response 
profiles, pathway mappings, compound structures, target binding assays and other phenotypic profiling data3. 
Several systematic review articles on the use of computational repurposing approaches are available that cover 
machine learning (ML) algorithms5–7. Several databases directly support in-silico drug repurposing, including 
Drug Repurposing Hub8, repoDB9 and RepurposeDB10. On the other hand, hundreds of databases can indirectly 
support drug repurposing7,11. However, these databases provide experimentally tested indications only for a 
limited number of approved drugs and ignore the massive number of investigational compounds that could be 
potential candidates for drug rescuing. Drug-target profiles for approximately two million such preclinical and 
investigational compounds are available at ChEMBL12 and other databases.

Drug-target interactions (DTI), meaning the target molecules each compound binds to and the relative 
binding strength and impact on cellular functions, lie at the heart of drug discovery and repositioning. Sev-
eral artificial intelligence (AI) methods for drug repurposing are based on DTIs as well as chemical structural 
similarities13–15. Computational approaches are primarily data-driven and involve a systematic analysis of several 
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components (or data types) before suggesting a repurposed indication. These components may include chemical 
structures, adverse event profiles, compound-target interactions, pathways, disease-gene associations, genom-
ics, proteomics, and transcriptomics information. Drug repurposing methods can be developed based on the 
individual or combination of these components. PREDICT is currently the second most cited computational 
method for predicting drug-disease relationships16. It is based on drug-drug and disease-disease networks based 
on 593 drugs and 313 diseases. Li, Jiao et al. proposed a bipartite graph-based method to identify new drug 
indications through its relationship with similar drugs17. The CMAF method uses matrix factorization to predict 
drug-disease associations based on drug and disease similarity networks18. However, these methods are applied 
only to a limited set of drugs resulting in limited prediction outcomes. Also, there is no such interactive web 
application for these methods.

Therefore, in this study, we propose DrugRepo (http://​drugr​epo.​org/); a novel scoring algorithm that can 
effectively repurpose approved drugs as well as rescue hundreds of thousands of investigational compounds 
based on three components, including (1) overlapping compound-target score (OCTS), (2) structure similarity 
score based on Tanimoto coefficient (TC), and (3) compound-disease score (CDS). The first component (OCTS) 
is the Jaccard index between drug-target profiles of approved drugs and candidate investigational compounds, 
as explained in section "Compound-target profiles". The second component is based on structural similarity 
between fingerprints of the approved drugs and candidate compounds using the Tanimoto coefficient. The third 
component is based on disease-gene associations and protein–protein interactions data. Finally, the DrugRepo 
score is the average of the three component scores. We have collected approved indications 1091 drugs, and 669 
diseases from clinical trials (https://​clini​caltr​ials.​gov/). The Potent compound-target profiles are collected for 
0.8 M compounds. To explore the translational impact of DrugRepo, we have cross-referenced candidate com-
pounds with completed clinical trials. We have observed that 186 compounds are explored in different clinical 
studies across nine cancer types. We have compared our candidate compounds with the predicted compound dis-
ease relationships in Comparative Toxicogenomic Database (CTD)19 and found a statistically significant overlap.

We have showed through several examples that the DrugRepo score ≥ 0.4 is an appropriate threshold to pre-
dict new drug-disease relationships. Using DrugRepo score ≥ 0.4, we have found repurposing potential for 516 
approved drugs across 545 diseases. We have demonstrated the use case of DrugRepo’s GUI to repurpose drugs 
for chronic myeloid leukaemia. As per our knowledge, no such tool can compute drug-disease relationships on a 
wide scale. These promising findings demonstrate the versatility of DrugRepo and provide a quick and effective 
scoring method for drug repurposing.

Materials
Several data types are integrated into this analysis, e.g., approved drug indications, compound-target profiles, 
disease-gene associations, and protein–protein interaction (PPI) networks. These data types are consequently 
explained in the following subsections.

Approved drug indications.  Approved drug indications are extracted from the clinical trials database, as 
it is the most up-to-date repository for drug indications and clinical phases for the compounds. However, the 
data provided by clinical trials is not well structured and doesn’t provide standard naming conventions or identi-
fiers for the compounds and diseases. We, therefore, utilized a semi-automated approach to extract drug-disease 
indications and assigned UML-CUI and standard InChIKey identifiers for drugs and diseases, respectively. The 
standard InChIKey mapping is performed using the PubChem python client, whereas UML-CUIs are assigned 
to the diseases using disease annotations provided by DisGeNET20. The curated gold standard dataset contains 
669 diseases (from 22 groups), 1091 drugs, and 3757 approved drug indications, as shown in Supplementary file 
1.

Compound‑target profiles.  Non-overlapping compound-target profiles are extracted from the five most 
comprehensive (and manually curated) databases, namely, ChEMBL21, BindingDB22, GtopDB23, DrugBank24, 
and DGiDB25. The compound identifiers in these databases are mapped into standard InChIKeys and SMILES 
using UniChem26 and PubChem27, respectively, whereas identifiers for target proteins are mapped to UniProt 
identifiers28. The combined non-overlapping compounds from the five databases exceed 2M with approximately 
15,000 targets. These comprehensive datasets are extracted using the application programmable interfaces 
(APIs), standalone text files, and SQL dumps. The first three databases, ChEMBL, BindingDB and GtopDB, 
provide quantitative bioactivity data, such as measurements in terms of IC50, Kd, and Ki, whereas DrugBank and 
DGiDB contain unary but experimentally verified compound-target interactions. In addition to active or potent 
compound-target profiles in ChEMBL, BindingDB and GtopDB, there exists a big proportion of in-active com-
pound-target profiles (concentration > 10,000 nM). These in-active compound-target profiles could jeopardize 
the analysis in the proposed research. Therefore, in this analysis, we consider only potent compound-target 
profiles (concentration is ≤ 1000 nM)29. Hence, we have left with 788,078 compounds and 8754 protein targets. 
Potent target profiles for these ~ 0.8 M compounds are already integrated and publicly available in MICHA30.

Disease‑gene associations and PPI networks.  To support the large-scale drug repurposing, we inte-
grated manually curated disease-gene associations from DisGeNET20. There are 9,703 genes, 11,181 diseases and 
84,038 associations. These curated disease-gene associations are provided in Supplementary file 2.

We have downloaded the protein–protein interactions (PPI) data from Cheng et al.31. They have manually 
curated high-quality human interactome based on five experimental types, (1) PPIs tested by high-throughput 
Y2H systems, (2) kinase-substrate interactions by literature-derived low-throughput experiments, (3) kinase-
substrate interactions from high-throughput experiments, (4) curated PPIs identified by affinity purification 
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and (5) signalling network by literature-derived low-throughput experiments. They have collected PPIs from 
databases such as IntAct32, InnateDB33, PINA34, HPRD35, MINT36 and BioGRID37. So, instead of collecting from 
a particular database, we preferred to use the precompiled PPIs in Cheng et al. The extracted dataset contains 
16,677 proteins and 243,603 PPIs.

Methods
There are 788,078 compounds for which at least one potent target (concentration is ≤ 1000 nM) exists in any of the 
five DTI databases. We call these agents candidate compounds to be rescued or repurposed. For each candidate 
compound, the DrugRepo score is computed as the average of three component scores, OCTS, TC, and CDS, 
derived from comparing each candidate compound to 1091 approved drugs (Fig. 1). Similarly, we have computed 

Figure 1.   The schematic figure for drug repurposing in DrugRepo. The DrugRepo pipeline starts with the user 
selecting a particular disease. There are ~ 0.8 M candidate compounds in DrugRepo that can be repurposed or 
rescued for 669 diseases. At first, the pipeline finds approved drug(s) for the selected disease and searches for 
structurally similar drugs or compounds. In this step, the Tanimoto coefficient (TC) describes the structural 
similarity between molecular fingerprints (ECFP4) of approved and candidate compounds. A threshold is used 
to favor similar molecular structures. The second step is to compute DTI profiles for candidate compounds 
and approved drugs. The OCTS is the score based on overlapping DTIs between approved and candidate 
compounds. In case of multiple approved drugs for a disease, we took average of OCTS and TC scores. The third 
step is to compute the compound-disease score (CDS). The CDS is the average of the minimum distances in the 
PPI networks between target molecules and molecules associated with the selected disease. The average distance 
is normalized to 0–1. Finally, the DrugRepo score is calculated as the average of the three component scores. The 
higher the DrugRepo score between the approved drug and the candidate compound, the higher the possibility 
of repurposing the compound for a particular disease. Finally, we developed the DrugRepo’s GUI to provide 
a user-friendly service for repurposing drugs with our pipeline. The OCTS between approved and candidate 
compounds are computed using Eq. 1. The OCTS ranges from 0 to 1 and represents the proportion of targets 
shared between an approved drug and the candidate compounds. Candidate compounds sharing more targets 
with the approved drugs will have higher OCTS values.
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DrugRepo scores between approved drugs for a particular disease and drugs approved for other diseases (drug 
repurposing). We have considered only those cases where the structural similarity between the approved drug 
and candidate compound is ≥ 0.2. This way, we have been left with 2,207,367 scores.

The overlapping compound-target score (OCTS) is the Jaccard index between drug-target profiles of approved 
drugs and candidate compounds and is computed using Eq. 1.

where DrugTandCompoundT are the sets of potent targets for a pair of approved drugs and candidate com-
pounds, respectively. Similarly,

∣

∣DrugT
∣

∣and
∣

∣CompoundT
∣

∣ are the total number of targets associated with the 
approved drug and the candidate compound, respectively.

Compound-target profiles are extracted from five databases. The number of overlapping compounds and 
targets in these five databases are shown in Fig. 2A, B, respectively. There are 483 compounds and 776 targets that 
are common in all five databases. As evident from Fig. 2A, ChEMBL features the most comprehensive collection 
of compounds, whereas DrugBank covers a more significant number of targets (Fig. 2B).

Drug repurposing is challenging because of shortcomings in data coverage. The diseases associated with a 
significant number of approved drugs may have better chances of correctly repurposing the compounds as the 
number of candidate compounds is larger. However, only very few diseases are associated with more approved 
drugs. HIV is associated with the highest number of approved drugs (n = 103), but as shown in Fig. 2C, more 
than 70% of diseases have less than five approved drugs. On the other hand, the lack of drug-target interactions 
is also a hurdle, as it limits the matching of compounds by the putative mechanism of action. Indeed, most 
approved drugs have less than 30 potent targets (Fig. 2D). To compensate for the shortage of approved drugs and 
drug-target-interactions, we incorporated two additional components in the DrugRepo pipeline: the Tanimoto 
coefficient (TC), which is a similarity score based on 2D structures, and the compound-disease score (CDS), 
which ranks new compounds based on how closely their target spaces match with the target proteins that are 
associated with the diseases.

The Tanimoto coefficient (TC) measures structural similarities between molecular ECFP4 fingerprints of 
approved and candidate compounds for a particular disease. The fingerprints are the bit strings denoting the 
presence or the absence of chemical substructures and are calculated using the RDKit package38.

where NAandNC are the number of sub-structures present in the approved drug and candidate compound, 
respectively, and NAC are the number of common sub-structures found in both the approved drug and the can-
didate compound. The value of TC is between the range 0–1 and constitutes the second component of DrugRepo.

The compound-disease score (CDS) is measured by averaging the minimum distances in PPI networks 
between potent targets of the candidate compound and genes associated with the disease, as shown in Eq. 3. 
Curated disease-gene associations are extracted from DisGeNET for the 669 diseases used in this analysis. There 
are 22,399 non-zero CDS values.

(1)OCTS =
DrugT ∩ CompoundT

min
(∣

∣DrugT
∣

∣,
∣

∣CompoundT
∣

∣

)

(2)TC =
NAC

NA + NC − NAC

Figure 2.   (A) Number of overlapping compounds across five databases. (B) Number of overlapping targets 
between five databases. (C) Distribution of diseases across 1091 approved drugs. (D)Target coverage across 1091 
approved drugs.
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where CG =
(

g1,g2,...
)

 is the set of gene targets for candidate compounds and DG =

(

g
′

1, g
′

2...
)

 are the genes 
associated with a particular disease (acquired from DisGeNET). The average of minimum distances between 
CGand DG are computed in PPI networks. The average distance is further normalized to 0–1 using min–max 
normalization. Finally, the DrugRepo score is the mean of the three compound scores and ranges from 0 to 1. 
The higher the DrugRepo score between an approved drug (for a particular disease) and a candidate compound, 
the greater the repurposing potential of the candidate compound for that disease.

Results
To explore the translational impact of DrugRepo, we have evaluated our repurposed drugs or rescued candidate 
compounds using two methods, i.e., (1) cross-referencing of thousands of the rescued compounds using disease-
compound associations in CTD19, (2) matching 186 compounds across nine cancer types for which either Phase 
I or Phase II trials have been completed or Phase III trials is ongoing.

Matching repurposed compounds with disease‑compound associations in CTD.  The Compara-
tive Toxicogenomic Database (CTD) contains manually curated and inferred compound-disease relationships19. 
CTD associates thousands of compounds with diseases based on drug-target and disease-gene relationships. 
Our scoring method and the datasets differ from CTD, but the output types in DrugRepo and CTD are the 
same. We, therefore, assessed the accuracy of DrugRepo by comparing the repurposed compounds with com-
pound-disease relationships in CTD. We have downloaded disease-compound relationships from CTD. In CTD, 
compounds are represented by CAS identifiers or compound names; and diseases using Mesh ids. To make the 
comparison possible, we have mapped compound names from the CTD dataset into standard InChIKeys using 
PubChempy. Diseases are mapped from MESH ids into UML-CUI. There are 1,048,548 compound-disease asso-
ciations in CTD, including 3941 compounds and 6119 diseases. Several of these compounds and diseases cannot 
map into standard InChIKeys and UML-CUI identifiers. We, therefore, skipped those cases and have left with 
only 168,471 compound-disease associations (605 diseases and 2,598 compounds), as shown in Supplementary 
file 3. These associations are used to match rescued compounds or repurposed drugs by DrugRepo. The signifi-
cance of matching results for overlapping compounds (for a particular disease) between DrugRepo and CTD is 
computed using the following equations:

where Call is the set of all candidate compounds (~ 0.8 M) in DrugRepo, Cd is the set of compounds associated 
with disease ‘d’ in CTD, Cr is the set of repurposed compounds by DrugRepo for the same disease ‘d’,Noverlap is 
the number of overlapping compounds between CTD and DrugRepo, Nexpected is the expected number of com-
pounds overlapping with Cd if we randomly choose the same number of compounds ( |Cr |) from Call , and Sigd 
is the significance of matched compounds. If the significance is greater than 0, our repurposing is not random.

DrugRepo contains ~ 0.8 M candidate compounds and 1,091 approved drugs. This could result in a vast matrix 
(~ 800 M). Therefore, we have considered only those candidate compounds with at least 50% structural similarity 
with the approved drugs (TC ≥ 0.5). If Noverlap for a particular disease is greater than Nexpected , Sigd is positive, 
meaning that repurposed or rescued compounds by DrugRepo are matched with CTD. Diseases with significance 
scores > 0 are shown in Fig. 3A ( Nexpected is shown with blue and Noverlap with red bars). As shown in Fig. 3A, the 
blue bar represents the expected number of compounds, and the red bar indicates the actual number of matched 
compounds. Most blue bars have significance scores less than 1, suggesting that if chosen randomly, there should 
be less than one candidate compound that can match most diseases. We have matched more than one correctly 
repurposed compound for 118 diseases (Fig. 3A). In other words, DrugRepo shows good repurposing and rescu-
ing ability in 118 of the 605 diseases in CTD, suggesting that our novel pipeline effectively repurposes drugs for 
several diseases. For example, DrugRepo contains 4921 candidate compounds and CTD has 401 compounds for 
myocardial infarction. If the selection of the 4921 compounds (from the 788,078 total candidate compounds) 
has been random, we would have expected an average of 2.51 matched compounds. However, we have matched 
15 compounds with CTD (6 folds bigger than the expected number), suggesting that the DrugRepo pipeline 
extracts biologically relevant candidate compounds. The details of overlapping drug-disease relationships and 
expected scores for 569 diseases are provided in Supplementary file 4.

To investigate the effect of structural similarity on drug repurposing/rescuing, we have evaluated the matched 
repurposed compounds on five different thresholds (TC: 0.5, 0.6, 0.7, 0.8, 0.9). As shown in Fig. 3B, the number of 
matched compounds tends to decrease with strict TC filtration on repurposed compounds, as expected. However, 
the significance scores are also reduced, especially after TC ≥ 0.9, suggesting that high structure similarity is not 
a determining factor for drug repurposing. Many of the matched repurposed compounds are located at TC ≥ 0.5. 
On the other hand, the number of matched compounds and significance scores is relatively stable between 
0.6 ≤ TC ≤ 0.7. Therefore, TC values between 0.6 and 0.7 might be optimal for drug repurposing.

We also have analyzed whether diseases associated with a more significant number of approved drugs can 
affect the DrugRepo scoring. As shown in Fig. 4A, if a specific disease is associated with a considerable number of 
approved drugs, more repurposed compounds can be matched (Pearson correlation = 0.7). Similarly, the number 

(3)CDS(CG ,DG) =
1

|DG| + |CG|

∑

i,j

mind
(

gi , g
′
j

)

Noverlap = |Cd ∩ Cr |

Nexpected = |Cd |∗|Cr |/|Call |

Sigd = Noverlap − Nexpected
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Figure 3.   (A) The circular bar shows drug repurposing results matched with CTD. All the matched diseases 
were distributed as pie in the circle. The blue bars represent (Nexpected ) the expected number of compounds, 
if chosen randomly while the red bar represents the actual overlap (Noverlap) between compounds in CTD and 
DrugRepo. (B) The Significance scores at different TC thresholds (with Y-axis as thresholds and X-axis as a 
disease whose true positive is not 0). The significance score is represented by dot size, and the colour from red to 
blue represents number of overlapping compounds.
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of matched repurposed compounds (Noverlap) is also closely associated with the significance score (Fig. 4B). Con-
versely, DrugRepo performance remains poor for the diseases associated with fewer approved drugs.

Furthermore, we have investigated whether DrugRepo scores are significantly different for drugs with dis-
similar therapeutic uses. Anatomical Therapeutic Chemical (ATC) is a widely recognized system that categorizes 
drugs into five levels. ATC level two group drugs/compounds into 94 classes based on therapeutic effects. The 
ChEMBL database provides ATC level two classifications for 2,739 drugs/compounds. The ’antineoplastic’ is one 
of the classes (out of 94) for ATC level two. Antineoplastic drugs are mostly used for the treatment of cancers. 
We, therefore, have tried to compare the distributions of Antineoplastic drugs with other drugs across two cancer 
types, i.e., Acute Myeloid leukemia and Chronic lymphocytic leukemia. The distributions of antineoplastic drugs 
have been significantly higher than other drugs, with P values < 0.001 for both cancer types (Fig. 5). Therefore, 
we can claim that drugs with similar therapeutic uses have higher scores compared to any random drugs.

Matching DrugRepo candidate compounds with drugs in clinical trials.  To establish if the Dru-
gRepo pipeline enriches compounds already tested in patients, we have chosen nine commonly studied cancer 
types to match repurposed compounds in DrugRepo with completed Phase I or Phase II or ongoing Phase III 
clinical trials. First, we have obtained the names of all compounds that match these criteria using the clinical trial 
API. Using PubChem’s API, we have tried mapping the compound names with standard InChIKeys. However, 
the naming convention for compounds still needs to be standardized, and several compounds have not been 
mapped and therefore omitted from the subsequent steps.

Figure 6A, B shows that 186 and 51 candidate compounds using structural similarity thresholds of TC ≥ 0.2 
and TC ≥ 0.5, respectively. The names and identifiers of these matched compounds and other statistics are pro-
vided in Supplementary file   5.

All these matched indications have either successfully passed phase I or phase II. Some candidate compounds 
could have high DrugRepo scores but cannot match with compounds at clinical trials. This could be either due to 
the lack of mapping for some compounds (at clinical trials) or because only limited compounds are being tested 

Figure 4.   The impact of significance score on number of: (A) approved drugs associated with a disease, (B) 
matched repurposed drugs or recued compounds.
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Figure 5.   Distribution of DrugRepo scores for drugs with similar therapeutic uses (antineoplastic) vs other 
drugs.

Figure 6.   (A) The number of matched candidate compounds across nine cancer types using structural 
similarity (TC) ≥ 0.2, (B) Number of matched candidate compounds using structural similarity (TC)  ≥ 0.5, (C) 
Distribution of DrugRepo scores for matched compounds for structural similarity (TC)  ≥  0.2, (D) Distribution 
of DrugRepo scores for matched compounds for structural similarity (TC)  ≥  0.5. (E) Distribution of compound-
disease score for repurposed compounds TC  ≥  0.2, (F) Distribution of compound-disease score for repurposed 
compounds TC  ≥  0.5, (G) Distribution overlapping target profile scores between approved and repurposed 
compounds TC  ≥  0.2, (H) Distribution overlapping target profile scores between approved and repurposed 
compounds TC  ≥  0.5.
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at clinical trials. However, by looking at the matched candidate compounds, we may find a suitable threshold on 
the DrugRepo score to identify repurposing compounds.

Lowering the structural similarity threshold increased the chances of matching more repurposed compounds. 
Figures 6A, B show the number of matched compounds across the nine cancer types for TC ≥ 0.2 and TC  ≥ 0.5, 
respectively. Figures 6C and 6D shows the distribution of DrugRepo scores using TC  ≥ 0.2 and TC  ≥ 0.5. Most 
matched candidate compounds have a median DrugRepo score higher than 0.4. Hence, we have used Dru-
gRepo  ≥ 0.4 to get maximum repurposing compounds.

Furthermore, we have explored the effect of structural similarity on OCTS and CDS. Figure 6E, F show that 
structural similarity slightly affects the OCTS thresholds but has no significant impact on compound-disease 
scores (CDS). However, TC values affect the final DrugRepo score (higher structural similarity corresponds 
to higher DrugRepo scores), as shown in Fig. 6C, D. Matched compounds for most cancer types have median 
CDS  ≥ 0.7, showing the importance of CDS in defining DrugRepo (Fig. 6E, F). The median of OCTS for different 
cancer types is lower (0.1–0.5) than CDS because most of the compound’s complete target profiles (across the 
entire druggable genome) are not experimentally tested. The average number of targets for the candidate and 
approved compounds for each of the five databases is less than 730. However, with the availability of additional 
high throughput DTI studies, the distribution of OCTS in DrugRepo score may also increase.

Setting a lower threshold on DrugRepo scores may result in more false positives (compounds not in clinical 
trials). So, we have analyzed the proportion of hits (compounds in clinical trials) across ten thresholds on Dru-
gRepo scores. As shown in Fig. 7, the hit percentage is greater than 5% (for all cancers) at DrugRepo score  ≥ 0.4. 
However, having miss-hits with clinical trials does not necessarily mean false positives, as clinical trials contain 
a limited number of studies and compounds.

Based on these successful matching, a DrugRepo score  ≥ 0.4 might guarantee the repurposing of a candidate 
compound with fewer chances of false positives. Using the threshold of DrugRepo score ≥ 0.4, we have specifically 
checked how many approved drugs could be repurposed. Surprisingly, we have been able to repurpose 516 drugs 
across 545 diseases (6229 pairs) from various groups, including cancers, lung, kidney, skin, and eye diseases. 
Table 1 shows the repurposed drugs having an average DrugRepo score  ≥ 0.9, along with the actual and predicted 
indications and the ongoing phase of clinical trials. There are nine drugs in Table 1 repurposed for ten indica-
tions. The complete table containing 516 drugs repurposed for 545 diseases, along with average DrugRepo scores, 
is provided in Supplementary file 6. Only a few compounds are tested in clinical trials; therefore, we suggest 
that top-scoring repurposed drugs test in-vitro to evaluate the significance of DrugRepo scores in future work.

Using the DrugRepo’s GUI to repurpose drugs for CML.  We provide a case study on Chronic Mye-
loid Leukaemia (CML) using the web interface at http://​drugr​epo.​org/. DrugRepo has three approved drugs 
(imatinib, nilotinib, and bosutinib) for CML. Users may check one or more of these approved drugs and custom-
ize the structural similarity and DrugRepo thresholds, as shown in Fig. 8A. The figure’s section on DrugRepo 
displays the results for the selected disease and associated approved compounds. Three figures can be selected 
from the figures dropdown list, i.e., (1) Statistics, (2) Repurposing scores, and (3) TSNE. The ‘Statistics’ displays 
the top targets (for approved drugs) and a list of repurposing compounds (Fig. 8B). We have used standard 
InChIKey identifiers for the repurposing compounds instead of names because many preclinical and investi-
gational compounds aren’t assigned proper names. For targets, we have used UniProt IDs. The ‘Repurposing 
scores’ provide a 3D scatterplot with the X-axis as TC, the Y-axis as OCTS and the Z-axis as CDS scores. Each 
point is a pair of approved drug and repurposed compound. Repurposing compounds are assigned the colours 
like the most associated approved drug (Fig.  8C). More details about diseases, approved drugs, repurposing 

Figure 7.   Hit ratio at different thresholds on different DrugRepo scores.The X-axis shows thresholds on 
DrugRepo scores, and Y-axis shows the percentage of hits while matching with repurposed compounds at 
https://​clini​caltr​ials.​gov/.

http://drugrepo.org/
https://clinicaltrials.gov/
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compounds, and the three scores will show if users click on the scatter points. T-distributed stochastic neighbour 
embedding (TSNE) is used to visualize the 2D similarity between approved drugs (purple) and repurposing 
compounds (red), as shown in Fig. 8D. The 2D similarity has been computed based on ECFP4 fingerprints.

Down to the Figures, there is a Tables section containing four tables in the ‘Tables’ dropdown list as listed 
below:

Table 1.   Drugs repurposed by DrugRepo at average score  ≥  0.9.

Drug Repurposed disease name Actual indications Average DrugRepo score Clinical trial phase

Clobetasol Keratitis Psoriasis 0.95 NA

Everolimus Renal cell carcinoma Subependymal giant cell astrocytoma;
Breast adenocarcinoma 0.93 Completed phase 3 (NCT01865747, 

NCT01668784)

Temsirolimus Subependymal giant cell astrocytoma Renal cell carcinoma 0.93 Completed phase 3 (NCT01865747)

Temsirolimus Breast adenocarcinoma Renal cell carcinoma 0.92 Completed phase 2 (NCT01111825)

Clobetasol Chronic myeloproliferative disorder Allergic rhinitis 0.91 NA

Paliperidone Developmental disabilities Schizoaffective Disorder 0.91 Completed phase 3 (NCT00549562)

Alisporivir Dry eye syndromes Hepatitis C 0.91 Nil

Terlipressin Shock Hepatorenal syndrome 0.91 Completed phase 2 (NCT00481572)

Valproic acid Bipolar I disorder Seizures 0.9 Completed phase 1 (NCT01094249)

Ethinyl estradiol Memory disorders Turner syndrome 0.9 NA

Ethinyl estradiol Myocardial infarction Turner syndrome 0.9 NA

Figure 8.   Using the DrugRepo GUI to repurpose drugs for CML. (A) Select disease interface, users can 
uncheck any of the approved drugs, modify TC, and DrugRepo thresholds, (B) Top targets for approved drugs 
and top repurposing/rescuing compounds, (C) Drug repurposing plot, each point is based on three scores for 
an approved drug and repurposing compound, (D) The 2D visualization for structural similarities between 
approved drugs and repurposing compounds.
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Drug repurposing table.
Approved drugs for the disease.
Disease-gene associations.
Drug target profiles for drugs and compounds.

The ‘Drug Repurposing’ table provides four scores (TC, OCTS, CDS and DrugRepo) between approved and 
repurposed drugs. The ‘Approved drugs for the disease’ table displays UML-CUIs for the selected disease and 
standard InChIKeys of the approved drugs. The ‘Disease-gene associations’ table displays the genes associated 
with the selected disease. Finally, the ‘Drug target profiles for drug and compounds’ table provides a list of drug 
targets associated with the approved drugs and candidate compounds. Users can use filter and sort options to 
customize the results and download data for further analysis.

Conclusion
DrugRepo provides a platform for repurposing or rescuing a massive number of compounds using chemical 
and genomic features. We have evaluated our methods by leveraging the datasets available at clinical trials and 
CTD. DrugRepo is based on three components, i.e., structural similarity (TC), overlapping compound-target 
score (OCTS), and compound-disease scores (CDS). CDS (median ≥ 0.75 in nine cancer types) is based on PPI 
networks and is more effective than OCTS (median ≥ 0.3) for matching repurposed compounds (as shown in 
Fig. 6G, H). By matching repurposed compounds, we suggest a DrugRepo score ≥ 0.4 as the threshold to repur-
pose compounds for a selected disease, as it has a lower chance of having false positives (Fig. 7). Based on this 
threshold, we could repurpose 516 drugs across 545 diseases (6229 pairs) from various groups (Supplementary 
file 6). As shown in Table 1, drug indications having high DrugRepo scores (> 0.9) are likely to pass trials at 
high phases of clinical trials. This provides an opportunity for future wet-lab scientists to validate high-scoring 
repurposed drugs experimentally and may initiate new clinical trials.

Computational analysis is further supported by a web application (http://​drugr​epo.​org/), where users can 
select a particular disease and get repurposed drugs or rescued compounds along with other parameters. Using 
DrugRepo GUI, users can select a particular disease, check the approved drugs and targets associated with 
approved drugs or candidate compounds, and finally download the drugs that can be repurposed for the selected 
disease. Users can adjust thresholds for structural similarity (TC) and DrugRepo scores (TC), as shown in Fig. 8A. 
We also provide user-friendly visualization by which users can apply different filters to obtain specific results 
and finally download results for further analysis. The web application can help design new drug repurposing 
applications and use existing information for predictive analysis.

However, our method has some limitations. For instance, the proposed approach depends on OCTS between 
approved drugs and candidate compounds. Missing data in DTI profiles for an approved drug or candidate 
compound may cause failure to capture some important repurposing candidates. Although we have integrated 
DTI profiles from the five most comprehensive databases, the average number of targets for approved drugs is 
around seven, which is much less than expected (as druggable targets are around 1000). However, new releases 
of DTI databases (such as ChEMBL, DTC, DrugBank or BindingDB) may bring additional curated DTIs, result-
ing in better repurposing applications. We do updates with the newly curated datasets to make DrugRepo more 
effective. Presently DrugRepo is based only on three components. However, results can be further improved 
with more components (such as gene expression data). We will therefore incorporate these improvements in 
the next version of DrugRepo.

Data availability
DrugRepo is available at http://​drugr​epo.​org/.
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