31 research outputs found

    Quantitative Mass Spectrometry Analysis Using PAcIFIC for the Identification of Plasma Diagnostic Biomarkers for Abdominal Aortic Aneurysm

    Get PDF
    BACKGROUND: Abdominal aortic aneurysm (AAA) is characterized by increased aortic vessel wall diameter (>1.5 times normal) and loss of parallelism. This disease is responsible for 1-4% mortality occurring on rupture in males older than 65 years. Due to its asymptomatic nature, proteomic techniques were used to search for diagnostic biomarkers that might allow surgical intervention under nonlife threatening conditions. METHODOLOGY/PRINCIPAL FINDINGS: Pooled human plasma samples of 17 AAA and 17 control patients were depleted of the most abundant proteins and compared using a data-independent shotgun proteomic strategy, Precursor Acquisition Independent From Ion Count (PAcIFIC), combined with spectral counting and isobaric tandem mass tags. Both quantitative methods collectively identified 80 proteins as statistically differentially abundant between AAA and control patients. Among differentially abundant proteins, a subgroup of 19 was selected according to Gene Ontology classification and implication in AAA for verification by Western blot (WB) in the same 34 individual plasma samples that comprised the pools. From the 19 proteins, 12 were detected by WB. Five of them were verified to be differentially up-regulated in individual plasma of AAA patients: adiponectin, extracellular superoxide dismutase, protein AMBP, kallistatin and carboxypeptidase B2. CONCLUSIONS/SIGNIFICANCE: Plasma depletion of high abundance proteins combined with quantitative PAcIFIC analysis offered an efficient and sensitive tool for the screening of new potential biomarkers of AAA. However, WB analysis to verify the 19 PAcIFIC identified proteins of interest proved inconclusive save for five proteins. We discuss these five in terms of their potential relevance as biological markers for use in AAA screening of population at risk

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Assessment of different quantification metrics of [¹⁸F]-NaF PET/CT images of patients with abdominal aortic aneurysm

    Get PDF
    Background: We aim to assess the spill-in effect and the benefit in quantitative accuracy for [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) using the background correction (BC) technique. Methods: Seventy-two datasets of patients diagnosed with AAA were reconstructed with ordered subset expectation maximization algorithm incorporating point spread function (PSF). Spill-in effect was investigated for the entire aneurysm (AAA), and part of the aneurysm excluding the region close to the bone (AAAexc). Quantifications of PSF and PSF+BC images using different thresholds (% of max. SUV in target regions-of-interest) to derive target-to-background (TBR) values (TBRmax, TBR90, TBR70 and TBR50) were compared at 3 and 10 iterations. Results: TBR differences were observed between AAA and AAAexc due to spill-in effect from the bone into the aneurysm. TBRmax showed the highest sensitivity to the spill-in effect while TBR50 showed the least. The spill-in effect was reduced at 10 iterations compared to 3 iterations, but at the expense of reduced contrast-to-noise ratio (CNR). TBR50 yielded the best trade-off between increased CNR and reduced spill-in effect. PSF+BC method reduced TBR sensitivity to spill-in effect, especially at 3 iterations, compared to PSF (P-value ≤ 0.05). Conclusion: TBR50 is robust metric for reduced spill-in and increased CNR

    Iterative reconstruction incorporating background correction improves quantification of [18F]-NaF PET/CT images of patients with abdominal aortic aneurysm

    Get PDF
    Background A confounding issue in [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) is the spill in contamination from the bone into the aneurysm. This study investigates and corrects for this spill in contamination using the background correction (BC) technique without the need to manually exclude the part of the AAA region close to the bone. Methods Seventy-two (72) datasets of patients with AAA were reconstructed with the standard ordered subset expectation maximization (OSEM) algorithm incorporating point spread function (PSF) modelling. The spill in effect in the aneurysm was investigated using two target regions of interest (ROIs): one covering the entire aneurysm (AAA), and the other covering the aneurysm but excluding the part close to the bone (AAAexc). ROI analysis was performed by comparing the maximum SUV in the target ROI (SUVmax(T)), the corrected cSUVmax (SUVmax(T) − SUVmean(B)) and the target-to-blood ratio (TBR = SUVmax(T)/SUVmean(B)) with respect to the mean SUV in the right atrium region. Results There is a statistically significant higher [18F]-NaF uptake in the aneurysm than normal aorta and this is not correlated with the aneurysm size. There is also a significant difference in aneurysm uptake for OSEM and OSEM + PSF (but not OSEM + PSF + BC) when quantifying with AAA and AAAexc due to the spill in from the bone. This spill in effect depends on proximity of the aneurysms to the bone as close aneurysms suffer more from spill in than farther ones. Conclusion The background correction (OSEM + PSF + BC) technique provided more robust AAA quantitative assessments regardless of the AAA ROI delineation method, and thus it can be considered as an effective spill in correction method for [18F]-NaF AAA studies

    Measurement and determinants of infrarenal aortic thrombus volume

    No full text
    Intra-luminal thrombus has been suggested to play a role in the progression of abdominal aortic aneurysm (AAA). The aims of this study were twofold. Firstly, to assess the reproducibility of a computer tomography (CT)-based technique for measurement of aortic thrombus volume. Secondly, to examine the determinants of infrarenal aortic thrombus volume in a cohort of patients with aortic dilatation. A consecutive series of 75 patients assessed by CT angiography with maximum aortic diameter ≥25 mm were recruited. Intra-luminal thrombus volume was measured by a semi-automated workstation protocol based on a previously defined technique to quantitate aortic calcification. Intra- and inter-observer reproducibility were assessed using correlation coefficients, coefficient of variation and Bland-Altman plots. Infrarenal aortic thrombus volume percentage was related to clinical, anatomical and blood characteristics of the patients using univariate and multivariate tests. Infrarenal aortic thrombus volume was related to the severity of aortic dilatation assessed by total aortic volume (r = 0.87, P < 0.0001) or maximum aortic diameter (r = 0.74, P < 0.0001). We therefore examined the clinical determinates of aortic thrombus expressed as a percentage of total aortic volume. Aortic thrombus percentage was negatively correlated with serum high density lipoprotein (HDL, r = -0.31). By ordinal multiple logistic regression analysis serum HDL below median (≤1.2 mM) was associated with aortic thrombus percentage in the upper quartile adjusting for other risk factors (odds ratio 5.3, 95% CI 1.1–25.0). Infrarenal aortic thrombus volume can be measured reproducibly on CT. Serum HDL, which can be therapeutically raised, may play a role in discouraging aortic thrombus accumulation with implications in terms of delaying progression of AAA
    corecore