2,167 research outputs found

    Tide, surge and still water levels at Chesil Beach

    No full text

    X-ray Pulsations in the Supersoft X-ray Binary CAL 83

    Full text link
    X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.Comment: revised text; 11 pages and 3 figures; accepted for publication in the Astronomical Journa

    Estimates of extreme still water levels at Newhaven

    No full text

    Off shore tide gauge data

    No full text

    Large-Scale Bulk Motions Complicate the Hubble Diagram

    Full text link
    We investigate the extent to which correlated distortions of the luminosity distance-redshift relation due to large-scale bulk flows limit the precision with which cosmological parameters can be measured. In particular, peculiar velocities of type 1a supernovae at low redshifts may prevent a sufficient calibration of the Hubble diagram necessary to measure the dark energy equation of state to better than 10%, and diminish the resolution of the equation of state time-derivative projected for planned surveys. We consider similar distortions of the angular-diameter distance, as well as the Hubble constant. We show that the measurement of correlations in the large-scale bulk flow at low redshifts using these distance indicators may be possible with a cumulative signal-to-noise ratio of order 7 in a survey of 300 type 1a supernovae spread over 20,000 square degrees.Comment: 6 pages; 4 figure

    Flatness optimization of micro-injection moulded parts: The case of a PMMA microfluidic component

    Get PDF
    Micro-injection moulding (µ-IM) has attracted a lot of interest because of its potential for the production of low-cost, miniaturized parts in high-volume. Applications of this technology are, amongst others, microfluidic components for lab-on-a-chip devices and micro-optical components. In both cases, the control of the part flatness is a key aspect to maintaining the component's functionality. The objective of this work is to determine the factors affecting the flatness of a polymer part manufactured by µ-IM and to control the manufacturing process with the aim of minimizing the in-process part deformation. As a case study, a PMMA microfluidic substrate with overall dimensions of 10 mm diameter and 1 mm thickness was investigated by designing a µ-IM experiment having flatness as the experimental response. The part flatness was measured using a micro-coordinate measuring machine. Finite elements analysis was also carried out to study the optimal ejection pin configuration. The results of this work show that the control of the µ-IM process conditions can improve the flatness of the polymer part up to about 15 µm. Part flatness as low as 4 µm can be achieved by modifying the design of the ejection system according to suggested guideline

    Off shore bottom pressure records Celtic Sea 1980

    No full text

    The OGLE View of Microlensing towards the Magellanic Clouds. II. OGLE-II SMC data

    Full text link
    The primary goal of this paper is to provide the evidence that can either prove or falsify the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects existed, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on the data from the second phase of the OGLE survey (1996-2000) towards the SMC. The data set we used is comprised of 2.1 million monitored sources distributed over an area of 2.4 square degrees. We found only one microlensing event candidate, however its poor quality light curve limited our discussion on the exact distance to the lensing object. Given a single event, taking the blending (crowding of stars) into account for the detection efficiency simulations, and deriving the HST-corrected number of monitored stars, the microlensing optical depth is tau=(1.55+-1.55)10e-7. This result is consistent with the expected SMC self-lensing signal, with no need of introducing dark matter microlenses. Rejecting the unconvincing event leads to the upper limit on the fraction of dark matter in the form of MACHOs to f<20 per cent for deflectors' masses around 0.4 Msun and f<11 per cent for masses between 0.003 and 0.2 Msun (95 per cent confidence limit). Our result indicates that the Milky Way's dark matter is unlikely to be clumpy and form compact objects in the sub-solar-mass range.Comment: Accepted for publication in MNRAS. Data in electronic form are available on the OGLE's website: http://ogle.astrouw.edu.pl
    corecore