30 research outputs found

    Motion for a Resolution tabled by Mr Barbi, Mr Vergeer, Mr Pedini, Mr Langes, Mr Penders, Mr Marck, Mrs Lenz, Mrs Walz, Mr Alber and Mrs Lentz-Cornette on behalf of the Group of the European People's Party (C-D Group) pursuant to Rule 47 of the Rules of Procedure on Nicaragua, Working Documents 1983-1984, Document 1-237/83, 26 April 1983

    Get PDF
    Peroxygenases offer an attractive means to address challenges in selective oxyfunctionalization chemistry. Despite this, their application in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant H2O2. Often atom-inefficient peroxide generation systems are required, which show little potential for large-scale implementation. Here, we show that visible-light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way, the stereoselective oxyfunctionalization of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/BiocatalysisBN/Greg Bokinsky La

    Assessing Peroxygenase-Mediated Oxidations in the Presence of High Concentrations of Water-Miscible Co-Solvents

    No full text
    The use of water-miscible organic co-solvents in biocatalysis is a simple procedure for obtaining higher enzymatic activities toward hydrophobic substrates. However, effects on activity and stability have to be carefully evaluated, also with regard to the type and concentration of the respective co-solvent. In this contribution, we investigated and evaluated the effect of some common water-miscible co-solvents on the biocatalytic performance of the recombinant unspecific peroxygenase rAaeUPO from Agrocybe aegerita. rAaeUPO showed promising activities in the presence of high concentrations of the best co-solvent acetonitrile, which enabled to use higher substrate concentrations (≥100 mM). Employing high acetonitrile concentrations for UPO-mediated oxidation of ethylbenzene to (R)-1-phenylethanol was demonstrated under preparative scale conditions and led to product accumulation rates of 31 mM h−1.BT/Biocatalysi

    Directed evolution of unspecific peroxygenase in organic solvents

    No full text
    Fungal unspecific peroxygenases (UPOs) are efficient biocatalysts that insert oxygen atoms into nonactivated C–H bonds with high selectivity. Many oxyfunctionalization reactions catalyzed by UPOs are favored in organic solvents, a milieu in which their enzymatic activity is drastically reduced. Using as departure point the UPO secretion mutant from Agrocybe aegerita (PaDa-I variant), in the current study we have improved its activity in organic solvents by directed evolution. Mutant libraries constructed by random mutagenesis and in vivo DNA shuffling were screened in the presence of increasing concentrations of organic solvents that differed both in regard to their chemical nature and polarity. In addition, a palette of neutral mutations generated by genetic drift that improved activity in organic solvents was evaluated by site directed recombination in vivo. The final UPO variant of this evolutionary campaign carried nine mutations that enhanced its activity in the presence of 30% acetonitrile (vol/vol) up to 23-fold over PaDa-I parental type, and it was also active and stable in aqueous acetone, methanol and dimethyl sulfoxide mixtures. These mutations, which are located at the surface of the protein and in the heme channel, seemingly helped to protect UPO from harmful effects of cosolvents by modifying interactions with surrounding residues and influencing critical loops.BT/Biocatalysi

    Peroxygenase-Catalysed Epoxidation of Styrene Derivatives in Neat Reaction Media

    Get PDF
    Biocatalytic oxyfunctionalisation reactions are traditionally conducted in aqueous media limiting their production yield. Here we report the application of a peroxygenase in neat reaction conditions reaching product concentrations of up to 360 mM.BT/Biocatalysi

    A Peroxygenase-Alcohol Dehydrogenase Cascade Reaction to Transform Ethylbenzene Derivatives into Enantioenriched Phenylethanols

    No full text
    In this study, we developed a new bienzymatic reaction to produce enantioenriched phenylethanols. In a first step, the recombinant, unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) was used to oxidise ethylbenzene and its derivatives to the corresponding ketones (prochiral intermediates) followed by enantioselective reduction into the desired (R)- or (S)-phenylethanols using the (R)-selective alcohol dehydrogenase (ADH) from Lactobacillus kefir (LkADH) or the (S)-selective ADH from Rhodococcus ruber (ADH-A). In a one-pot two-step cascade, 11 ethylbenzene derivatives were converted into the corresponding chiral alcohols at acceptable yields and often excellent enantioselectivity.BT/Biocatalysi

    Multienzymatic in situ hydrogen peroxide generation cascade for peroxygenase-catalysed oxyfunctionalisation reactions

    No full text
    There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/BiocatalysisBN/Greg Bokinsky La

    Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions

    Get PDF
    Peroxyzymes simply use H2O2 as a cosubstrate to oxidize a broad range of inert C-H bonds. The lability of many peroxyzymes against H2O2 can be addressed by a controlled supply of H2O2, ideally in situ. Here, we report a simple, robust, and water-soluble anthraquinone sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed halogenation and peroxygenase-catalyzed oxyfunctionalization reactions. Simple alcohols, methanol in particular, can be used both as a cosolvent and an electron donor for H2O2 generation. Very promising turnover numbers for the biocatalysts of up to 318 »000 have been achieved. BT/Biocatalysi

    Recent developments in the use of peroxygenases – Exploring their high potential in selective oxyfunctionalisations

    No full text
    Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.BT/Biocatalysi

    Piezobiocatalysis: Ultrasound-Driven Enzymatic Oxyfunctionalization of C-H Bonds

    No full text
    Peroxygenases have long inspired the selective oxyfunctionalization of various aliphatic and aromatic compounds, because of their broad substrate spectrum and simplicity of catalytic mechanism. This study provides a proof-of-concept of piezobiocatalysis by demonstrating peroxygenase-catalyzed oxyfunctionalization reactions fueled by piezocatalytically generated H2O2. Bismuth oxychloride (BiOCl) generated H2O2 in situ via an oxygen reduction reaction under ultrasonic wave conditions. Through the simple combination of water, ultrasound, recombinant, evolved unspecific peroxygenase from Agrocybe aegerita (rAaeUPO), and BiOCl, the piezobiocatalytic platform accelerated selective hydroxylation of ethylbenzene to enantiopure (R)-1-phenylethanol [total turnover number of rAaeUPO (TTNrAaeUPO), 2002; turnover frequency, 77.7 min-1 >99% enantiomeric excess (ee)]. The BiOCl-rAaeUPO couple also catalyzed other representative substrates (e.g., propylbenzene, 1-chloro-4-ethylbenzene, cyclohexane, and cis-β-methylstyrene) with high turnover frequency and selectivity. We alleviated the oxidative stress of piezocatalytically generated OH- on rAaeUPO by spatial separation of rAaeUPO and BiOCl, which resulted in greatly enhanced TTNrAaeUPO of >3900 and the notable prolongation of reaction time. Overall, the BiOCl-rAaeUPO couple serves as a mechanical-to-chemical energy conversion platform for driving peroxygenase-catalyzed reactions under ultrasonic conditions.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi

    Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media

    Get PDF
    The peroxygenase from Agrocybe aegerita (AaeUPO) has been evaluated for stereoselective oxyfunctionalization chemistry under non-aqueous reaction conditions. The stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol was performed in neat substrate as reaction medium together with the immobilized biocatalyst and tertBuOOH as oxidant. Stability and activity issues still have to be addressed. Nevertheless, gram-scale production of enantiopure (R)-1-phenylethanol was achieved with respectable 90,000 turnovers of the biocatalyst.BT/Biocatalysi
    corecore