660 research outputs found
A long term study of axonal transport in the central visual system following eye enucleation in the adult cat.
The effect of the enucleation of one eye on anterograde and retrograde labelling in geniculo-cortical, cortico-geniculate and commissural projections was investigated in adult cats by means of horseradish peroxidase (HRP) and tritiated aminoacids. It was found that in addition to the immediate decrease of retrograde labelling with HRP in the cortical projections from the deafferented A-laminae of the dorsal part of the lateral geniculate nucleus (Singer et al. 1977) there is a further reduction which lasts up to 75 days after enucleation. At 146 and 363 days after enucleation a slight increase in the number of labelled neurones was noted in the deafferented lamina. Qualitative assessment did not reveal any changes of anterograde labelling with tritiated amino acids in geniculo-cortical, cortico-geniculate and commissural axones. In addition, the retrograde labelling with HRP in cortico-geniculate and commissural projections seemed to be unaffected by eye enucleation
Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation
We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures,
derive the associated Kohn-Sham equations, and determine the
exchange-correlation energy in local density approximation. We solve
numerically the Kohn-Sham system and determine the boson and fermion density
distributions and the ground-state energy of a trapped, dilute mixture beyond
mean-field approximation. The importance of the corrections due to
exchange--correlation is discussed by comparison with current experiments; in
particular, we investigate the effect of of the repulsive potential energy
contribution due to exchange--correlation on the stability of the mixture
against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review
Mixing-Demixing transition in 1D boson-fermion mixture at low fermion densities
We numerically investigated the mixing-demixing transition of the
boson-fermion mixture on a 1D lattice at an incommensurate filling with the
fermion density being kept below the boson density. The phase diagram we
obtained suggested that the decrease of the number of the fermions drove the
system into the demixing phase
Thermodynamics of a Trapped Bose-Fermi Mixture
By using the Hartree-Fock-Bogoliubov equations within the Popov
approximation, we investigate the thermodynamic properties of a dilute binary
Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an
attractive Bose-Fermi interaction we find a sizable enhancement of the
condensate fraction and of the critical temperature of Bose-Einstein
condensation with respect to the predictions for a pure interacting Bose gas.
Conversely, the influence of the repulsive Bose-Fermi interaction is less
pronounced. The possible relevance of our results in current experiments on
trapped {\rm K} mixtures is discussed.Comment: 5 pages + 4 figures; minor changes, final version to appear in Phys.
Rev. A; the extension work on the finite-temperature low-lying excitations
can be found in cond-mat/030763
Mixtures of Bosonic and Fermionic Atoms in Optical Lattices
We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic
potentials at zero temperature. We derive a general Bose--Fermi Hubbard
Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic
trapping potential. We study the conditions for linear stability of the mixture
and derive a mean field criterion for the onset of a Bosonic superfluid
transition. We investigate the ground state properties of the mixture in the
Gutzwiller formulation of mean field theory, and present numerical studies of
finite systems. The Bosonic and Fermionic density distributions and the onset
of quantum phase transitions to demixing and to a Bosonic Mott--insulator are
studied as a function of the lattice potential strength. The existence is
predicted of a disordered phase for mixtures loaded in very deep lattices. Such
a disordered phase possessing many degenerate or quasi--degenerate ground
states is related to a breaking of the mirror symmetry in the lattice.Comment: 11 pages, 8 figures; added discussions; conclusions and references
expande
Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture
We compare the experimental stability diagram of a Fermi-Bose mixture of K-40
and Rb-87 atoms with attractive interaction to the predictions of a mean-field
theoretical model. We discuss how this comparison can be used to give a better
estimate of the interspecies scattering length, which is currently known from
collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure
Demixing in mesoscopic boson-fermion clouds inside cylindrical harmonic traps: quantum phase diagram and role of temperature
We use a semiclassical three-fluid thermodynamic model to evaluate the
phenomena of spatial demixing in mesoscopic clouds of fermionic and bosonic
atoms at high dilution under harmonic confinement, assuming repulsive
boson-boson and boson-fermion interactions and including account of a bosonic
thermal cloud at finite temperature T. The finite system size allows three
different regimes for the equilibrium density profiles at T=0: a fully mixed
state, a partially mixed state in which the overlap between the boson and
fermion clouds is decreasing, and a fully demixed state where the two clouds
have zero overlap. We propose simple analytical rules for the two cross-overs
between the three regimes as functions of the physical system parameters and
support these rules by extensive numerical calculations. A universal ``phase
diagram'' expressed in terms of simple scaling parameters is shown to be valid
for the transition to the regime of full demixing, inside which we identify
several exotic configurations for the two phase-separated clouds in addition to
simple ones consisting of a core of bosons enveloped by fermions and "vice
versa". With increasing temperature the main role of the growing thermal cloud
of bosons is to transform some exotic configurations into more symmetric ones,
until demixing is ultimately lost. For very high values of boson-fermion
repulsive coupling we also report demixing between the fermions and the
thermally excited bosons.Comment: 11 pages, 8 figure
- …