248 research outputs found

    A Targeted Constitutive Mutation in the Apc Tumor Suppressor Gene Underlies Mammary But Not Intestinal Tumorigenesis

    Get PDF
    Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/β-catenin signaling. Notably, genotype–phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/β-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/β-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc+/1572T mice suggests that specific dosages of Wnt/β-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion

    Tension, Free Space, and Cell Damage in a Microfluidic Wound Healing Assay

    Get PDF
    We use a novel, microfluidics-based technique to deconstruct the classical wound healing scratch assay, decoupling the contribution of free space and cell damage on the migratory dynamics of an epithelial sheet. This method utilizes multiple laminar flows to selectively cleave cells enzymatically, and allows us to present a 'damage free' denudation. We therefore isolate the influence of free space on the onset of sheet migration. First, we observe denudation directly to measure the retraction in the cell sheet that occurs after cell-cell contact is broken, providing direct and quantitative evidence of strong tension within the sheet. We further probe the mechanical integrity of the sheet without denudation, instead using laminar flows to selectively inactivate actomyosin contractility. In both cases, retraction is observed over many cell diameters. We then extend this method and complement the enzymatic denudation with analogies to wounding, including gradients in signals associated with cell damage, such as reactive oxygen species, suspected to play a role in the induction of movement after wounding. These chemical factors are evaluated in combination with the enzymatic cleavage of cells, and are assessed for their influence on the collective migration of a non-abrasively denuded epithelial sheet. We conclude that free space alone is sufficient to induce movement, but this movement is predominantly limited to the leading edge, leaving cells further from the edge less able to move towards the wound. Surprisingly, when coupled with a gradient in ROS to simulate the chemical effects of abrasion however, motility was not restored, but further inhibited.Massachusetts Institute of Technology. Presidential FellowshipNational Institutes of Health (U.S.). Biotechnology Training FellowshipSingapore-MIT Alliance for Research and TechnologyMassachusetts Institute of Biotechnology Training GrantMassachusetts Institute of Technology (Open-source Funding

    Retention of progenitor cell phenotype in otospheres from guinea pig and mouse cochlea

    Get PDF
    Abstract\ud \ud Background\ud Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.\ud \ud \ud Methods\ud Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFα). Immunofluorescence assays were conducted for phenotype characterization.\ud \ud \ud Results\ud The TGFα group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.\ud \ud \ud Conclusions\ud Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage

    Evaluation of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental dental resin-based materials

    Get PDF
    ABSTRACT Objective To evaluate the influence of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental resin-based materials photoactivated using different light curing units (LCUs). Material and Methods Experimental resin-based materials with the same organic matrix (60:40 wt% BisGMA:TEGDMA) were mechanically blended using a centrifugal mixing device. To this blend, different photoinitiator systems were added in equimolar concentrations with aliphatic amine doubled by wt%: 0.4 wt% CQ; 0.38 wt% PPD; or 0.2 wt% CQ and 0.19 wt% PPD. The degree of conversion (DC), flexural strength (FS), Young’s modulus (YM), Knoop hardness (KNH), crosslinking density (CLD), and yellowing (Y) were evaluated (n=10). All samples were light cured with the following LCUs: a halogen lamp (XL 2500), a monowave LED (Radii), or a polywave LED (Valo) with 16 J/cm2. The results were analysed by two-way ANOVA and Tukey’s test (α=0.05). Results No statistical differences were found between the different photoinitiator systems to KNH, CLS, FS, and YM properties (p≥0.05). PPD/CQ association showed the higher DC values compared with CQ and PPD isolated systems when photoactivated by a polywave LED (p≤0.05). Y values were highest for the CQ compared with the PPD systems (p≤0.05). Conclusion PPD isolated system promoted similar chemical and mechanical properties and less yellowing compared with the CQ isolated system, regardless of the LCU used

    Precision restoration: a necessary approach to foster forest recovery in the 21st century

    Get PDF
    We thank S. Tabik, E. Guirado, and Garnata Drone SL for fruitful debates about the application of remote sensing and artificial intelligence in restoration. E. McKeown looked over the English version of the manuscript. Original drawings were made by J. D. Guerrero. This work was supported by projects RESISTE (P18-RT-1927) from the Consejeria de Economia, Conocimiento, y Universidad from the Junta de Andalucia, and AVA201601.19 (NUTERA-DE I), DETECTOR (A-RNM-256-UGR18), and AVA2019.004 (NUTERA-DE II), cofinanced (80%) by the FEDER Program. F.M.-R. acknowledges the support of the Agreement 4580 between OTRI-UGR and the city council of La Zubia. We thank an anonymous reviewer for helpful comments that improved the manuscript.Forest restoration is currently a primary objective in environmental management policies at a global scale, to the extent that impressive initiatives and commitments have been launched to plant billions of trees. However, resources are limited and the success of any restoration effort should be maximized. Thus, restoration programs should seek to guarantee that what is planted today will become an adult tree in the future, a simple fact that, however, usually receives little attention. Here, we advocate for the need to focus restoration efforts on an individual plant level to increase establishment success while reducing negative side effects by using an approach that we term “precision forest restoration” (PFR). The objective of PFR will be to ensure that planted seedlings or sowed seeds will become adult trees with the appropriate landscape configuration to create functional and self-regulating forest ecosystems while reducing the negative impacts of traditional massive reforestation actions. PFR can take advantage of ecological knowledge together with technologies and methodologies from the landscape scale to the individual- plant scale, and from the more traditional, low-tech approaches to the latest high-tech ones. PFR may be more expensive at the level of individual plants, but will be more cost-effective in the long term if it allows for the creation of resilient forests able to providemultiple ecosystemservices. PFR was not feasible a few years ago due to the high cost and low precision of the available technologies, but it is currently an alternative that might reformulate a wide spectrum of ecosystem restoration activities.Junta de Andalucia P18-RT-1927European Commission AVA201601.19 A-RNM-256-UGR18 AVA2019.004OTRI-UGR 4580city council of La Zubia 458
    corecore