4 research outputs found

    Optimization of long-range PCR protocol to prepare filaggrin exon 3 libraries for PacBio long-read sequencing

    Get PDF
    BackgroundThe filaggrin (FLG) protein, encoded by the FLG gene, is an intermediate filament-associated protein that plays a crucial role in the terminal stages of human epidermal differentiation. Loss-of-function mutations in the FLG exon 3 have been associated with skin diseases. The identification of causative mutations is challenging, due to the high sequence homology within its exon 3 (12,753 bp), which includes 10 to 12 filaggrin tandem repeats. With this study we aimed to obtain the whole FLG exon 3 sequence through PacBio technology, once 13-kb amplicons have been generated.Methods and resultsFor the preparation of SMRTbell libraries to be sequenced using PacBio technology, we focused on optimizing a 2-step long-range PCR protocol to generate 13-kb amplicons covering the whole FLG exon 3 sequence. The performance of three long-range DNA polymerases was assessed in an attempt to improve the PCR conditions required for the enzymes to function properly. We focused on optimization of the input template DNA concentration and thermocycling parameters to correctly amplify the entire FLG exon 3 sequence, minimizing non-specific amplification.ConclusionsTaken together, our findings suggested that the PrimeSTAR protocol is suitable for producing the amplicons of the 13-kb FLG whole exon 3 to prepare SMRTbell libraries. We suggest that sequencing the generated amplicons may be useful for identifying LoF variants that are causative of the patients' disorders

    Comparison between American and European legislation in the therapeutical and alimentary bacteriophage usage

    No full text
    © Mattioli 1885.Bacteriophages, though discovered a century ago, still lag behind in the race of antimicrobials due to scarce information about their biology, pharmacology, safety and suitability as therapeutic agents. Although they possess several capabilities of practical utility in medicine, they are still unable to satisfy the regulatory standards set by the regulatory authorities in both United States (US) and European Union (EU). Bacteriophages and their products (lysins) are considered as drugs, therefore they should follow the same route of the chemical drugs in order to achieve regulatory approvals for commercial production and application. However, lack of definitive guidelines and regulations has rendered bacteriophages less attractive to pharmaceutical companies and funding agencies, making it difficult for clinicians and researchers to set up wide scale clinical trials in order to prove efficacy, safety and stability of bacteriophages and their products. In this review, we will discuss the current regulations for developing phages and phage-based products for therapeutic purposes in the US and EU. (www.actabiomedica.it)
    corecore