4,199 research outputs found

    Lateral phase separation of confined membranes

    Full text link
    We consider membranes interacting via short, intermediate and long stickers. The effects of the intermediate stickers on the lateral phase separation of the membranes are studied via mean-field approximation. The critical potential depth of the stickers increases in the presence of the intermediate sticker. The lateral phase separation of the membrane thus suppressed by the intermediate stickers. Considering membranes interacting with short and long stickers, the effect of confinement on the phase behavior of the membranes is also investigated analytically

    Molecular Electroporation and the Transduction of Oligoarginines

    Full text link
    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.Comment: 15 pages, 5 figure

    Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles

    Full text link
    We examine the mechanism of bundling of cytoskeletal actin filaments by two representative bundling proteins, fascin and espin. Small-angle X-ray studies show that increased binding from linkers drives a systematic \textit{overtwist} of actin filaments from their native state, which occurs in a linker-dependent fashion. Fascin bundles actin into a continuous spectrum of intermediate twist states, while espin only allows for untwisted actin filaments and fully-overtwisted bundles. Based on a coarse-grained, statistical model of protein binding, we show that the interplay between binding geometry and the intrinsic \textit{flexibility} of linkers mediates cooperative binding in the bundle. We attribute the respective continuous/discontinous bundling mechanisms of fascin/espin to differences in the stiffness of linker bonds themselves.Comment: 5 pages, 3 figures, figure file has been corrected in v

    Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction

    Full text link
    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. (A. Mogilner et al., Phys. Lett. {\bf 237}, 297 (1998)), and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.Comment: 12 pages revtex, 6 eps-figure

    Specific protein-protein binding in many-component mixtures of proteins

    Get PDF
    Proteins must bind to specific other proteins in vivo in order to function. The proteins must bind only to one or a few other proteins of the of order a thousand proteins typically present in vivo. Using a simple model of a protein, specific binding in many component mixtures is studied. It is found to be a demanding function in the sense that it demands that the binding sites of the proteins be encoded by long sequences of bits, and the requirement for specific binding then strongly constrains these sequences. This is quantified by the capacity of proteins of a given size (sequence length), which is the maximum number of specific-binding interactions possible in a mixture. This calculation of the maximum number possible is in the same spirit as the work of Shannon and others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in line with notation in information theory literature

    Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?

    Full text link
    Intracellular transport processes driven by molecular motors can be described by stochastic lattice models of self-driven particles. Here we focus on bidirectional transport models excluding the exchange of particles on the same track. We explore the possibility to have efficient transport in these systems. One possibility would be to have appropriate interactions between the various motors' species, so as to form lanes. However, we show that the lane formation mechanism based on modified attachment/detachment rates as it was proposed previously is not necessarily connected to an efficient transport state and is suppressed when the diffusivity of unbound particles is finite. We propose another interaction mechanism based on obstacle avoidance that allows to have lane formation for limited diffusion. Besides, we had shown in a separate paper that the dynamics of the lattice itself could be a key ingredient for the efficiency of bidirectional transport. Here we show that lattice dynamics and interactions can both contribute in a cooperative way to the efficiency of transport. In particular, lattice dynamics can decrease the interaction threshold beyond which lanes form. Lattice dynamics may also enhance the transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table

    Comparison of Simulator Wear Measured by Gravimetric vs Optical Surface Methods for Two Million Cycles

    Get PDF
    Understanding wear mechanisms are key for better implants Critical to the success of the simulation Small amount of metal wear can have catastrophic effects in the patient such as heavy metal poisoning or deterioration of the bone/implant interface leading to implant failure Difficult to measure in heavy hard-on-hard implants (metal-on-metal or ceramic-on-ceramic) May have only fractions of a milligram of wear on a 200 g component At the limit of detection of even high-end balances when the component is 200 g and the change in weight is on the order of 0.000 1 grams Here we compare the standard gravimetric wear estimate with A non-contact 3D optical profiling method at each weighing stop A coordinate measuring machine (CMM) at the beginning and end of the ru

    Directed transport as a mechanism for protein folding in vivo

    Full text link
    We propose a model for protein folding in vivo based on a Brownian-ratchet mechanism in the multidimensional energy landscape space. The device is able to produce directed transport taking advantage of the assumed intrinsic asymmetric properties of the proteins and employing the consumption of energy provided by an external source. Through such a directed transport phenomenon, the polypeptide finds the native state starting from any initial state in the energy landscape with great efficacy and robustness, even in the presence of different type of obstacles. This model solves Levinthal's paradox without requiring biased transition probabilities but at the expense of opening the system to an external field.Comment: 16 pages, 7 figure

    Master equation approach to DNA-breathing in heteropolymer DNA

    Full text link
    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes and of the waiting times between successive bubble events from the master equation. A comparison to results of a stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure

    Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    Get PDF
    In this work we numerically calculate the electric current through three kinds of DNA sequences (telomeric, \lambda-DNA, and p53-DNA) described by different heuristic models. A bias voltage is applied between two zig-zag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. The calculation of current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of lengths and sequence initialisation at the contacts. The current-voltage curves suggest the existence of stepped structures independent of length and sequencing initialisation at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNA, such as \lambda-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current
    corecore