4,199 research outputs found
Lateral phase separation of confined membranes
We consider membranes interacting via short, intermediate and long stickers.
The effects of the intermediate stickers on the lateral phase separation of the
membranes are studied via mean-field approximation. The critical potential
depth of the stickers increases in the presence of the intermediate sticker.
The lateral phase separation of the membrane thus suppressed by the
intermediate stickers. Considering membranes interacting with short and long
stickers, the effect of confinement on the phase behavior of the membranes is
also investigated analytically
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles
We examine the mechanism of bundling of cytoskeletal actin filaments by two
representative bundling proteins, fascin and espin. Small-angle X-ray studies
show that increased binding from linkers drives a systematic \textit{overtwist}
of actin filaments from their native state, which occurs in a linker-dependent
fashion. Fascin bundles actin into a continuous spectrum of intermediate twist
states, while espin only allows for untwisted actin filaments and
fully-overtwisted bundles. Based on a coarse-grained, statistical model of
protein binding, we show that the interplay between binding geometry and the
intrinsic \textit{flexibility} of linkers mediates cooperative binding in the
bundle. We attribute the respective continuous/discontinous bundling mechanisms
of fascin/espin to differences in the stiffness of linker bonds themselves.Comment: 5 pages, 3 figures, figure file has been corrected in v
Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction
We investigate by analytical means the stochastic equations of motion of a
linear molecular motor model based on the concept of protein friction. Solving
the coupled Langevin equations originally proposed by Mogilner et al. (A.
Mogilner et al., Phys. Lett. {\bf 237}, 297 (1998)), and averaging over both
the two-step internal conformational fluctuations and the thermal noise, we
present explicit, analytical expressions for the average motion and the
velocity-force relationship. Our results allow for a direct interpretation of
details of this motor model which are not readily accessible from numerical
solutions. In particular, we find that the model is able to predict
physiologically reasonable values for the load-free motor velocity and the
motor mobility.Comment: 12 pages revtex, 6 eps-figure
Specific protein-protein binding in many-component mixtures of proteins
Proteins must bind to specific other proteins in vivo in order to function.
The proteins must bind only to one or a few other proteins of the of order a
thousand proteins typically present in vivo. Using a simple model of a protein,
specific binding in many component mixtures is studied. It is found to be a
demanding function in the sense that it demands that the binding sites of the
proteins be encoded by long sequences of bits, and the requirement for specific
binding then strongly constrains these sequences. This is quantified by the
capacity of proteins of a given size (sequence length), which is the maximum
number of specific-binding interactions possible in a mixture. This calculation
of the maximum number possible is in the same spirit as the work of Shannon and
others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in
line with notation in information theory literature
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Comparison of Simulator Wear Measured by Gravimetric vs Optical Surface Methods for Two Million Cycles
Understanding wear mechanisms are key for better implants
Critical to the success of the simulation
Small amount of metal wear can have catastrophic effects in the patient such as heavy metal poisoning or deterioration of the bone/implant interface leading to implant failure
Difficult to measure in heavy hard-on-hard implants (metal-on-metal or ceramic-on-ceramic)
May have only fractions of a milligram of wear on a 200 g component
At the limit of detection of even high-end balances when the component is 200 g and the change in weight is on the order of 0.000 1 grams
Here we compare the standard gravimetric wear estimate with
A non-contact 3D optical profiling method at each weighing stop
A coordinate measuring machine (CMM) at the beginning and end of the ru
Directed transport as a mechanism for protein folding in vivo
We propose a model for protein folding in vivo based on a Brownian-ratchet
mechanism in the multidimensional energy landscape space. The device is able to
produce directed transport taking advantage of the assumed intrinsic asymmetric
properties of the proteins and employing the consumption of energy provided by
an external source. Through such a directed transport phenomenon, the
polypeptide finds the native state starting from any initial state in the
energy landscape with great efficacy and robustness, even in the presence of
different type of obstacles. This model solves Levinthal's paradox without
requiring biased transition probabilities but at the expense of opening the
system to an external field.Comment: 16 pages, 7 figure
Master equation approach to DNA-breathing in heteropolymer DNA
After crossing an initial barrier to break the first base-pair (bp) in
double-stranded DNA, the disruption of further bps is characterized by free
energies between less than one to a few kT. This causes the opening of
intermittent single-stranded bubbles. Their unzipping and zipping dynamics can
be monitored by single molecule fluorescence or NMR methods. We here establish
a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of
a master equation that governs the time evolution of the joint probability
distribution for the bubble size and position along the sequence. The transfer
coefficients are based on the Poland-Scheraga free energy model. We derive the
autocorrelation function for the bubble dynamics and the associated relaxation
time spectrum. In particular, we show how one can obtain the probability
densities of individual bubble lifetimes and of the waiting times between
successive bubble events from the master equation. A comparison to results of a
stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure
Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes
In this work we numerically calculate the electric current through three
kinds of DNA sequences (telomeric, \lambda-DNA, and p53-DNA) described by
different heuristic models. A bias voltage is applied between two zig-zag edged
graphene contacts attached to the DNA segments, while a gate terminal modulates
the conductance of the molecule. The calculation of current is performed by
integrating the transmission function (calculated using the lattice Green's
function) over the range of energies allowed by the chemical potentials. We
show that a telomeric DNA sequence, when treated as a quantum wire in the fully
coherent low-temperature regime, works as an excellent semiconductor. Clear
steps are apparent in the current-voltage curves of telomeric sequences and are
present independent of lengths and sequence initialisation at the contacts. The
current-voltage curves suggest the existence of stepped structures independent
of length and sequencing initialisation at the contacts. We also find that the
molecule-electrode coupling can drastically influence the magnitude of the
current. The difference between telomeric DNA and other DNA, such as
\lambda-DNA and DNA for the tumour suppressor p53, is particularly visible in
the length dependence of the current
- …
