23 research outputs found
Building a transdisciplinary expert consensus on the cognitive drivers of performance under pressure: An international multi-panel Delphi study
IntroductionThe ability to perform optimally under pressure is critical across many occupations, including the military, first responders, and competitive sport. Despite recognition that such performance depends on a range of cognitive factors, how common these factors are across performance domains remains unclear. The current study sought to integrate existing knowledge in the performance field in the form of a transdisciplinary expert consensus on the cognitive mechanisms that underlie performance under pressure.MethodsInternational experts were recruited from four performance domains [(i) Defense; (ii) Competitive Sport; (iii) Civilian High-stakes; and (iv) Performance Neuroscience]. Experts rated constructs from the Research Domain Criteria (RDoC) framework (and several expert-suggested constructs) across successive rounds, until all constructs reached consensus for inclusion or were eliminated. Finally, included constructs were ranked for their relative importance.ResultsSixty-eight experts completed the first Delphi round, with 94% of experts retained by the end of the Delphi process. The following 10 constructs reached consensus across all four panels (in order of overall ranking): (1) Attention; (2) Cognitive Control—Performance Monitoring; (3) Arousal and Regulatory Systems—Arousal; (4) Cognitive Control—Goal Selection, Updating, Representation, and Maintenance; (5) Cognitive Control—Response Selection and Inhibition/Suppression; (6) Working memory—Flexible Updating; (7) Working memory—Active Maintenance; (8) Perception and Understanding of Self—Self-knowledge; (9) Working memory—Interference Control, and (10) Expert-suggested—Shifting.DiscussionOur results identify a set of transdisciplinary neuroscience-informed constructs, validated through expert consensus. This expert consensus is critical to standardizing cognitive assessment and informing mechanism-targeted interventions in the broader field of human performance optimization
A Role for Polymerase η in the Cellular Tolerance to Cisplatin-Induced Damage
Mutation of the POLH gene encoding DNA polymerase η (pol η) causes the UV-sensitivity syndrome xeroderma pigmentosum-variant (XP-V) which is linked to the ability of pol η to accurately bypass UV-induced cyclobutane pyrimidine dimers during a process termed translesion synthesis. Pol η can also bypass other DNA damage adducts in vitro, including cisplatin-induced intrastrand adducts, although the physiological relevance of this is unknown. Here, we show that independent XP-V cell lines are dramatically more sensitive to cisplatin than the same cells complemented with functional pol η. Similar results were obtained with the chemotherapeutic agents, carboplatin and oxaliplatin, thus revealing a general requirement for pol η expression in providing tolerance to these platinum-based drugs. The level of sensitization observed was comparable to that of XP-A cells deficient in nucleotide excision repair, a recognized and important mechanism for repair of cisplatin adducts. However, unlike in XP-A cells, the absence of pol η expression resulted in a reduced ability to overcome cisplatin-induced S phase arrest, suggesting that pol η is involved in translesion synthesis past these replication-blocking adducts. Subcellular localization studies also highlighted an accumulation of nuclei with pol η foci that correlated with the formation of monoubiquitinated proliferating cell nuclear antigen following treatment with cisplatin, reminiscent of the response to UV irradiation and further indicating a role for pol η in dealing with cisplatin-induced damage. Together, these data show that pol η represents an important determinant of cellular responses to cisplatin, which could have implications for acquired or intrinsic resistance to this key chemotherapeutic agent
Recommended from our members
A Role for Polymerase ? in the Cellular Tolerance to Cisplatin-Induced Damage
Mutation of the POLH gene encoding DNA polymerase ? (pol ?) causes the UV-sensitivity syndrome xeroderma pigmentosum-variant (XP-V) which is linked to the ability of pol ? to accurately bypass UV-induced cyclobutane pyrimidine dimers during a process termed translesion synthesis. Pol ? can also bypass other DNA damage adducts in vitro, including cisplatin-induced intrastrand adducts, although the physiological relevance of this is unknown. Here, we show that independent XP-V cell lines are dramatically more sensitive to cisplatin than the same cells complemented with functional pol ?. Similar results were obtained with the chemotherapeutic agents, carboplatin and oxaliplatin, thus revealing a general requirement for pol ? expression in providing tolerance to these platinum-based drugs. The level of sensitization observed was comparable to that of XP-A cells deficient in nucleotide excision repair, a recognized and important mechanism for repair of cisplatin adducts. However, unlike in XP-A cells, the absence of pol ? expression resulted in a reduced ability to overcome cisplatin-induced S phase arrest, suggesting that pol ? is involved in translesion synthesis past these replication-blocking adducts. Subcellular localization studies also highlighted an accumulation of nuclei with pol ? foci that correlated with the formation of monoubiquitinated proliferating cell nuclear antigen following treatment with cisplatin, reminiscent of the response to UV irradiation and further indicating a role for pol ? in dealing with cisplatin-induced damage. Together, these data show that pol ? represents an important determinant of cellular responses to cisplatin, which could have implications for acquired or intrinsic resistance to this key chemotherapeutic agent
Aneuploid colon cancer cells have a robust spindle checkpoint
Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN
The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming
Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo
In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenograft.
noAQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic
Targeting the m(6)A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication
N-6-methyladenosine (m(6)A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m(6)A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m(6)A-modified. How the cellular m(6)A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human beta-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m(6)A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m(6)A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m(6)A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m(6)A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m(6)A-modified and host m(6)A pathway components control beta-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m(6)A pathway to restrict coronavirus reproduction