68 research outputs found

    Pressure-induced delocalization of photoexcited states in a semiconducting polymer.

    Get PDF
    We present broadband transient absorption spectroscopy on the fluorescent copolymer poly(9,9-dioctylfluorene-co-benzothiadiazole) under hydrostatic pressure of up to 75 kbar. We observe a strong reduction of the stimulated emission intensity under pressure, coupled with slower decay kinetics and reduced fluorescence intensity. These observations indicate increased delocalization of photogenerated singlet excitons, facilitated by an increased dielectric constant at high pressure. Spin triplet excitons, generated via an iridium complex-F8BT oligomer, show reduced lifetimes under pressure

    Secondary school student participation in carbon footprint assessment for schools

    Get PDF
    More and more cities are setting themselves ambitious climate protection targets, including CO2 neutrality. Schools are important institutions of cities and therefore they have to play a central role in achieving this goal. With the investment backlog building up and pressure from the Friday for Future movement increasing, the Wuppertal Institute and BĂŒro Ö-quadrat have initiated the project Schools4Future, aiming to support secondary schools to become climate-neutral. In cooperation with secondary school students and teachers, the project team evaluated the existing situation of the participating schools and developed GHG-balances and feasible climate protection concepts. For this purpose, an Excel-based carbon footprint (CF) assessment tool for schools has been developed which is freely available. The tool covers all important emission areas, including heating energy, electricity use, travel to and from schools, school trips, the school canteen and paper consumption. The students were found capable to conduct the CF assessment with the guidance of the teacher, information materials and support of the researchers. So far, six pilot schools have completed their CF assessment with emissions ranging between 335 and 944 kg CO2 per person. In this paper we present the tool and compare the CF assessment of some schools. We further elaborate on how the tool and project has increased the climate awareness and self-efficacy of students and even stimulated measures by the school board

    IEA EBC Annex83 positive energy districts

    Get PDF
    At a global level, the need for energy efficiency and an increased share of renewable energy sources is evident, as is the crucial role of cities due to the rapid urbanization rate. As a consequence of this, the research work related to Positive Energy Districts (PED) has accelerated in recent years. A common shared definition, as well as technological approaches or methodological issues related to PEDs are still unclear in this development and a global scientific discussion is needed. The International Energy Agency’s Energy in Buildings and Communities Programme (IEA EBC) Annex 83 is the main platform for this international scientific debate and research. This paper describes the challenges of PEDs and the issues that are open for discussions and how the Annex 83 is planned and organized to facilitate this and to actively steer the development of PEDs major leaps forward. The main topics of discussion in the PED context are the role and importance of definitions of PEDs, virtual and geographical boundaries in PEDs, the role of different stakeholders, evaluation approaches, and the learnings of realized PED projects

    The nature of singlet exciton fission in carotenoid aggregates.

    Get PDF
    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/ 1), the European Community (LASERLAB-EUROPE, grant agreement no. 284464, EC’s Seventh Framework Programme; and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177), and the Winton Programme for the Physics of Sustainability. G.C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). J.C. acknowledges support by the Royal Society Dorothy Hodgkin Fellowship and The University of Sheffield’s Vice- Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130

    Photophysical Study of DPPTT-T/PC70BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPP-Based Polymers

    Get PDF
    Diketopyrrolopyrrole (DPP)-based polymers have been consistently used for the fabrication of solar cell devices and transistors due to the existence of intermolecular short contacts, resulting in high electron and hole mobilities. However, they also often show limited external quantum efficiencies (EQEs). In this contribution, the authors analyze the limitations on EQE by a combined study of exciton dissociation efficiency, charge separation, and recombination kinetics in thin films and solar devices of a DPP-based donor polymer, DPPTT-T (thieno[3,2-b]thiophene-diketopyrrolopyrrole copolymer) blended with varying weight fractions of the fullerene acceptor PC70BM. From the correlations between photoluminescence quenching, transient absorption studies, and EQE measurements, it is concluded that the main limitation of photon-to-charge conversion in DPPTT-T/PC70BM devices is poor exciton dissociation. This exciton quenching limit is related not only to the low affinity/miscibility of the materials, as confirmed by wide angle X-ray diffraction diffraction and transmission electron microscopy data, but also to the relatively short DPPTT-T singlet exciton lifetime, possibly associated with high nonradiative losses. A further strategy to improve EQE in this class of polymers without sacrificing the good extraction properties in optimized blends is therefore to limit those nonradiative decay processes

    Zinc Phthalocyanine−Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics and Photoelectrochemical Cell Preparation

    Get PDF
    Graphene exfoliation upon tip sonication in o-­‐DCB was accomplished. Then, covalent grafting of (2-­‐ aminoethoxy)(tri-­‐tert-­‐butyl) zinc phthalocyanine (ZnPc), to exfoliated graphene sheets was achieved. The newly formed ZnPc-­‐graphene hybrid material was found soluble in common organic solvents without any precipitation for several weeks. Application of diverse spectroscopic techniques verified the successful formation of ZnPc-­‐graphene hybrid materi-­‐ al, while thermogravimetric analysis revealed the amount of ZnPc loading onto graphene. Microscopy analysis based on AFM and TEM was applied to probe the morphological characteristics and to investigate the exfoliation of graphene sheets. Efficient fluorescence quenching of ZnPc in the ZnPc-­‐graphene hybrid material suggested that photoinduced events occur from the photoexcited ZnPc to exfoliated graphene. The dynamics of the photoinduced electron transfer was evaluated by femtosecond transient absorption spectroscopy, thus, revealing the formation of transient species such as ZnPc+ yielding the charge-­‐separated state ZnPc‱+–graphene‱–. Finally, the ZnPc-­‐graphene hybrid material was integrated into a photoactive electrode of an optical transparent electrode (OTE) cast with nanostructured SnO2 films (OTE/SnO2), which exhibited sta le and reproducible photocurrent responses and the incident photon-­‐to-­‐current conversion efficien-­‐ cy was determine

    Making school-based GHG-emissions tangible by student-led carbon footprint assessment program

    Get PDF
    Schools play an important role in achieving climate protection goals, because they lay the foundation of knowledge for a responsible next generation. Therefore, schools as institutions have a special role model function. Enabling schools to become aware of their own carbon footprint (CF) is an important prerequisite for being able to tap the substantial CO2 reduction potential. Aiming at the direct involvement of students in the assessment process, a new assessment tool was developed within the Schools4Future project that gives students the opportunity to determine their own school's CF. With this instrument the CO2 emissions caused by mobility, heating and electricity consumption as well as for food in the school canteen and for consumables (paper) can be recorded. It also takes into account existing renewable energy sources. Through the development of the tool, not only a monitoring instrument was established but also a concrete starting point from which students could take actions to reduce Greenhouse Gas (GHG) emissions. This paper presents the tool and its methods used to calculate the CF and compares it with existing approaches. A comparative case study of four pilot schools in Germany demonstrates the practicability of the tool and reveals fundamental differences between the GHG emissions

    Gemeinschaftsaufgabe Klimaschutz an Schulen : ein Leitfaden

    No full text
    Dieses Buch bietet einen Leitfaden fĂŒr mehr Klimaschutz an Schulen und holt Schulleitungen, LehrkrĂ€fte und SchĂŒler:innen gemeinschaftlich ins Boot - denn Klimaschutz ist eine Gemeinschaftsaufgabe. Mit dem "Whole School Approach" wird die ganzheitliche Umsetzung von KlimaschutzaktivitĂ€ten in der Schulentwicklung angestoßen und auf schulischer Ebene ermöglicht und erleichtert. Ziel ist es, Lehrer:innen in ihrer Gestaltungskompetenz fĂŒr mehr Klimaschutz zu stĂ€rken - dies geschieht durch konkrete VorschlĂ€ge fĂŒr die Arbeit mit SchĂŒler:innen im Unterricht. Partizipative Methoden der Beteiligung sollen die SchĂŒler:innen empowern und den LehrkrĂ€ften Ideen geben, um die eigene Selbstwirksamkeit, aber auch die der SchĂŒler:innen zu steigern. Die zentrale Kernbotschaft lautet: ein Klimaschutzprojekt an der Schule ist wesentlich fĂŒr die strukturelle Verankerung von Bildung fĂŒr nachhaltige Entwicklung im Schulalltag. Der Leitfaden gibt Anregungen fĂŒr die Unterrichtsgestaltung, Anregungen fĂŒr die Entwicklung eines Klimaschutzleitbildes, Hinweise fĂŒr das GebĂ€udemanagement und Ideen zur Einbindung des schulischen Umfelds
    • 

    corecore