3,066 research outputs found
Monetary policy and economic activity: a postwar review
Monetary policy ; Financial markets ; Economic conditions
Spin transfer switching of spin valve nanopillars using nanosecond pulsed currents
Spin valve nanopillars are reversed via the mechanism of spin momentum
transfer using current pulses applied perpendicular to the film plane of the
device. The applied pulses were varied in amplitude from 1.8 mA to 7.8 mA, and
varied in duration within the range of 100 ps to 200 ns. The probability of
device reversal is measured as a function of the pulse duration for each pulse
amplitude. The reciprocal pulse duration required for 95% reversal probability
is linearly related to the pulse current amplitude for currents exceeding 1.9
mA. For this device, 1.9 mA marks the crossover between dynamic reversal at
larger currents and reversal by thermal activation for smaller currents
Topology of the conceptual network of language
We define two words in a language to be connected if they express similar
concepts. The network of connections among the many thousands of words that
make up a language is important not only for the study of the structure and
evolution of languages, but also for cognitive science. We study this issue
quantitatively, by mapping out the conceptual network of the English language,
with the connections being defined by the entries in a Thesaurus dictionary. We
find that this network presents a small-world structure, with an amazingly
small average shortest path, and appears to exhibit an asymptotic scale-free
feature with algebraic connectivity distribution.Comment: 4 pages, 2 figures, Revte
A general wavelet-based profile decomposition in the critical embedding of function spaces
We characterize the lack of compactness in the critical embedding of
functions spaces having similar scaling properties in the
following terms : a sequence bounded in has a subsequence
that can be expressed as a finite sum of translations and dilations of
functions such that the remainder converges to zero in as
the number of functions in the sum and tend to . Such a
decomposition was established by G\'erard for the embedding of the homogeneous
Sobolev space into the in dimensions with
, and then generalized by Jaffard to the case where is a Riesz
potential space, using wavelet expansions. In this paper, we revisit the
wavelet-based profile decomposition, in order to treat a larger range of
examples of critical embedding in a hopefully simplified way. In particular we
identify two generic properties on the spaces and that are of key use
in building the profile decomposition. These properties may then easily be
checked for typical choices of and satisfying critical embedding
properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older
and BMO spaces.Comment: 24 page
Structural efficiency of percolation landscapes in flow networks
Complex networks characterized by global transport processes rely on the
presence of directed paths from input to output nodes and edges, which organize
in characteristic linked components. The analysis of such network-spanning
structures in the framework of percolation theory, and in particular the key
role of edge interfaces bridging the communication between core and periphery,
allow us to shed light on the structural properties of real and theoretical
flow networks, and to define criteria and quantities to characterize their
efficiency at the interplay between structure and functionality. In particular,
it is possible to assess that an optimal flow network should look like a "hairy
ball", so to minimize bottleneck effects and the sensitivity to failures.
Moreover, the thorough analysis of two real networks, the Internet
customer-provider set of relationships at the autonomous system level and the
nervous system of the worm Caenorhabditis elegans --that have been shaped by
very different dynamics and in very different time-scales--, reveals that
whereas biological evolution has selected a structure close to the optimal
layout, market competition does not necessarily tend toward the most customer
efficient architecture.Comment: 8 pages, 5 figure
Current-Driven Magnetization Dynamics in Magnetic Multilayers
We develop a quantum analog of the classical spin-torque model for
current-driven magnetic dynamics. The current-driven magnetic excitation at
finite field becomes significantly incoherent. This excitation is described by
an effective magnetic temperature rather than a coherent precession as in the
spin-torque model. However, both the spin-torque and effective temperature
approximations give qualitatively similar switching diagrams in the
current-field coordinates, showing the need for detailed experiments to
establish the proper physical model for current-driven dynamics.Comment: 5 pages, 2 figure
Magnetization dynamics with a spin-transfer torque
The magnetization reversal and dynamics of a spin valve pillar, whose lateral
size is 6464 nm, are studied by using micromagnetic simulation in
the presence of spin transfer torque. Spin torques display both characteristics
of magnetic damping (or anti-damping) and of an effective magnetic field. For a
steady-state current, both M-I and M-H hysteresis loops show unique features,
including multiple jumps, unusual plateaus and precessional states. These
states originate from the competition between the energy dissipation due to
Gilbert damping and the energy accumulation due to the spin torque supplied by
the spin current. The magnetic energy oscillates as a function of time even for
a steady-state current. For a pulsed current, the minimum width and amplitude
of the spin torque for achieving current-driven magnetization reversal are
quantitatively determined. The spin torque also shows very interesting thermal
activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure
Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; towards improvement of surveillance programs
Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs
- …