27 research outputs found

    Economic Lot-Sizing with Start-up Costs: The Convex Hull

    Get PDF
    A partial description of the convex hull of solutions to the economic lot-sizing problem with start-up costs (ELSS) has been derived recently. Here a larger class of valid inequalities is given and it is shown that these inequalities describe the convex hull of ELSS. This in turn proves that a plant location formulation as a linear program solves ELSS. Finally a separation algorithm is given

    Sensitivity Analysis of List Scheduling Heuristics

    Get PDF
    When jobs have to be processed on a set of identical parallel machines so as to minimize the makespan of the schedule, list scheduling rules form a popular class of heuristics. The order in which jobs appear on the list is assumed here to be determined by the relative size of their processing times; well known special cases are the LPT rule and the SPT rule, in which the jobs are ordered according to non-increasing and non-decreasing processing time respectively. When one of the job processing times is gradually increased, the schedule produced by a list scheduling rule will be affected in a manner reflecting its sensitivity to data perturbations. We analyze this phenomenon and obtain analytical support for the intuitively plausible notion that the sensitivity of a list scheduling rule increases with the quality of the schedule produced

    Integrated market selection and production planning: Complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to influence demand characteristics can lead to an improved match between supply and demand. This paper presents a class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP -complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very efficient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    A Solution Approach for Dynamic Vehicle and Crew Scheduling

    No full text
    In this paper, we discuss the dynamic vehicle and crew scheduling problem and we propose a solution approach consisting of solving a sequence of optimization problems. Furthermore, we explain why it is useful to consider such a dynamic approach and compare it with a static one. Moreover, we perform a sensitivity analysis on our main assumption that the travel times of the trips are known exactly a certain amount of time before actual operation. We provide extensive computational results on some real-world data instances of a large public transport company in the Netherlands. Due to the complexity of the vehicle and crew scheduling problem, we solve only small and medium-sized instances with such a dynamic approach. We show that the results are good in the case of a single depot. However, in the multiple-depot case, the dynamic approach does not perform so well. We investigate why this is the case and conclude that the fact that the instance has to be split in several smaller ones, has a negative effect on the performance

    Calculation of Stability . . .

    No full text
    We present algorithms to calculate the stability radius of optimal or approximate solutions of binary programming problems with a min-sum or min{max objective function. Our algorithms run in polynomial time if the optimization problem itself is polynomially solvable. We also extend our results to the tolerance approach to sensitivity analysis

    An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs

    No full text
    We consider the Capacitated Economic Lot Size Problem with piecewise linear production costs and general holding costs, which is an NP-hard problem but solvable in pseudo-polynomial time. A straightforward dynamic programming approach to this problem results in an O(n 2 c\bar d\bar ) algorithm, where n is the number of periods, and d\bar and c\bar are the average demand and the average production capacity over the n periods, respectively. However, we present a dynamic programming procedure with complexity O(n 2 q\bar d\bar ), where q\bar is the average number of pieces required to represent the production cost functions. In particular, this means that problems in which the production functions consist of a fixed set-up cost plus a linear variable cost are solved in O(n 2 d\bar ) time. Hence, the running time of our algorithm is only linearly dependent on the magnitude of the data. This result also holds if extensions such as backlogging and startup costs are considered. Moreover, computational experiments indicate that the algorithm is capable of solving quite large problem instances within a reasonable amount of time. For example, the average time needed to solve test instances with 96 periods, 8 pieces in every production cost function, and average demand of 100 units is approximately 40 seconds on a SUN SPARC 5 workstation.Economic Lot Sizing, Dynamic Programming, Computational Complexity

    Four equivalent lot-sizing models

    No full text
    We study the following lot-sizing models that recently appeared in the literature: a lot-sizing model with a remanufacturing option, a lot-sizing model with production time windows, and a lot-sizing model with cumulative capacities. We show the equivalence of these models with a classical model: the lot-sizing model with inventory bounds. Key words: Lot-sizing; Equivalent models
    corecore