
SENSITIVITY ANALYSIS OF
LIST SCHEDULING HEURISTICS

by
A. W.J. Kolen, A.H.G. Rinnooy Kan,

C.P.M. Van Hoesel, and
A.P.M. Wagelmans

OR 229-90 October 1990

SENSITIVITY ANALYSIS OF LIST SCHEDULING HEURISTICS

A.W.J. Kolen1

A.H.G. Rinnooy Kan 2

C.P.M. Van Hoesel 2'3

A.P.M. Wagelmans2'4

October 1990

Abstract

When jobs have to be processed on a set of identical parallel machines so

as to minimize the makespan of the schedule, list scheduling rules form a

popular class of heuristics. The order in which jobs appear on the list is

assumed here to be determined by the relative size of their processing

times; well known special cases are the LPT rule and the SPT rule, in which

the jobs are ordered according to non-increasing and non-decreasing

processing time respectively.

When one of the job processing times is gradually increased, the schedule

produced by a list scheduling rule will be affected in a manner reflecting

its sensitivity to data perturbations. We analyze this phenomenon and

obtain analytical support for the intuitively plausible notion that the

sensitivity of a list scheduling rule increases with the quality of the

schedule produced.

Keywords: sensitivity analysis, list scheduling, heuristics, robustness,

scheduling

1) Faculty of Economics, Limburg University, P.O. Box 616, 6200 MD
Maastricht, The Netherlands

2) Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738,
3000 DR Rotterdam, The Netherlands

3) Supported by the Netherlands Organization for Scientific Research (NWO)
under grant no. 611-304-017

4) On leave at the Operations Research Center, Room E 40-164, Massachusetts
Institute of Technology, Cambridge, MA 02139

1. Introduction

Combinatorial problems whose computational complexity effectively rules out

their optimal solution within a reasonable amount of time are frequently

solved by heuristics, fast methods that produce a suboptimal but hopefully

reasonable feasible solution. The analysis of their performance is a lively

research area. In addition to empirical analysis, the emphasis has mostly

been on worst case and probabilistic analysis of the deviation between the

heuristic solution value and the optimal one.

There is, however, an important feature of algorithmic behavior that has

hardly received attention. It concerns the effect on algorithmic

performance of perturbations in the problem data. This effect has been well

studied for optimization methods, under the general heading of sensitivity

analysis or parametric optimization (for a review see Wagelmans (1990)).

Typically, one finds that the optimal solutions to hard (i.e., NP-hard)

optimization problems are highly unstable, in that a small change in the

problem data can produce a large change in the value or structure of the

optimal solution. This characteristic property provides an additional

incentive to turn to heuristic methods in which case a more robust behavior

could be hoped for. Indeed, it is plausible to conjecture an inverse

relation between the quality of the solution produced by the heuristic and

its robustness under changes in problem data. At one end of the spectrum,

the optimal solution is very unstable; at the other end, simplistic

heuristics that extract little information from the data will produce very

poor but very stable solutions. Most heuristics will be somewhere in

between the two.

In this paper, we obtain some evidence supporting this general conjecture

for the special case of the minimization of makespan on parallel identical

machines. In this prototypical scheduling problem, jobs with processing

times Pl ... , Pn have to be distributed among m identical machines so as to

minimize the time span of the resulting schedule. If the completion time of

the j-th job is denoted by Cj, then this criterion amounts to the

minimization of Z= maxj=,...,n{Cj.

1

This NP-hard problem has been the subject of extensive research ; many

heuristics for its solution have been proposed (for a review see Lawler et

al. (1989)). We will concentrate on a class of heuristics known as list

scheduling rules. Such rules are defined by a priority list in which the

jobs appear in order of decreasing priority. Whenever a machine becomes

idle, the unscheduled job with the highest priority is assigned to this

machine. Depending on the way the priority list is constructed, the

schedules produced by such heuristics may be quite poor or quite good.

Thus, this class of heuristics provides a natural vehicle for the analysis

of the relation between solution quality and robustness.

To arrive at a more precise formulation, we restrict our attention to

priority lists that are defined by the relative sizes of the processing

times. Thus, when the jobs are initially ordered according to

non-decreasing processing time, a list scheduling rule corresponds to a

permutation r with the j-th job of this order appearing in the r(j)-th

position in the list. Two well-known examples of such permutation list

scheduling rules are the SPT (Shortest Processing Time) and the LPT

(Longest Processing Time) rules, defined by 7r(j)=j and 7(j)=n-j+l,

j=l,...,n, respectively. The quality of the solution produced by these

rules is very different. The SPT rule yields schedules whose value can

exceed the optimal one by a factor of 2-1/m (see Graham (1966)); for the

LPT rule, this factor is at most 4/3-1/(3m) (see Graham (1969)); both

bounds are tight. A similar difference in quality emerges from a

probabilistic analysis: under appropriate assumptions, it can be shown that

the expected absolute error of the LPT rule is O(1/n), whereas the expected

absolute error of the SPT rule is /2(1) (see Frenk and Rinnooy Kan (1987)).

From now on we assume that the jobs are numbered such that initially

P1<P2< ... <Pn holds. In what follows, we will investigate the effect on the

performance of the SPT rule, the LPT rule and the other rules in this class

under a simple type of data perturbation: we allow Pl, the initially

smallest processing time, to increase from zero to infinity. For a given

heuristic H, given n and a given value pi = A, it is then natural to study

the solution value Z(A) as a function of A, in the sense that this

function provides information on the robustness of heuristic H. As we will

see in Section 2, Z is a continuous piecewise linear function; the worst

case number of breakpoints BH will then serve as a first indication of how

2

quickly the solution value adapts to changes in the problem data. Actually,

there turns out to be a simple relationship between BH and the worst case

number of different assignments AH of jobs to machines as A increases from

zero to infinity, i.e., the number of different partitions of the jobs into

m subsets that can occur during this increase. Sometimes, it will turn out

to be convenient to carry out the analysis in terms of AH rather than BH.

In Sections 3 and 4, we look at the SPT rule and the LPT rule,

respectively. We establish that ASPT<n and BSPT<2 Fn/ml; both upper bounds

are tight. In contrast APT<2n-m and BLPT<2n-m+1; the first bound is tight,

and there exists an example for which BLPT> 2 (n-m)/2. These results nicely

support the conjectured relationship between solution quality and

robustness.

In Section 5, we show that the LPT rule is almost an extreme case; for an

arbitrary permutation 7r, A < 2 n- m+l and Bn < 2 n-m+2. Some concluding remarks

are collected in Section 6.

2. The function Zn

In this section we will show that, for any list scheduling rule defined by

a permutation r on the processing time A for job 1 and processing time pj

for job j, j=2,3,....,n, with P2< P3<... <Pn, Z is a continuous piecewise

linear function of A, 0 <A < oo. Each of the linear parts of Z will be

constant or have a slope of one.

To illustrate the result we first present an example on two machines and

four jobs with processing times Pi = A, P2 = , P3 = 2, P 4 = 4 that are scheduled

according to the LPT-rule. The different schedules and corresponding linear

parts of Z L PT are given in Figure 1.

3

0 1 2 3 4 5 6 7 8

I I l I l l I I I

4

3 1 2
1 1

4

3 1 1 1 2

4 1 2

1 1 3 3

4 1 2
1 1 3

4 1 3
1 1 2 1

4 1 3

1 1 2

4 1 3 1 2
1 1

4 1 3 1 2 1Ir~ ~1 I

0 < A < 1, Z4PT(A) = 4

1<A<2, ZLPT(A) = 31<A<2 ZLPT(A)=3±A

2<A<3, ZLPT(A)=5

3<A<4, Z4PT(A)=2+A

4<A<5, ZLPT() = 6

5<A<6, ZL4PT(A) =

6<A<7, Z4PT(A)=7

7<A<c', ZLPT(A) =A

Figure 1: Example LPT - schedules

Let us now look at an arbitrary permutation list scheduling heuristic

applied to an arbitrary problem instance. When A is increased from zero to

infinity the ordering of the jobs according to non-decreasing processing

times and hence the list will change, although the relative order of the

jobs 2,3,...,n will remain the same. If A is equal to one of the processing

times P2,...,Pn, then we may assume that in the order according to

non-decreasing processing time job 1 follows directly after the job with

largest index for which the processing time equals A. Thus, a further

increase of A leaves the current ordering unchanged until A becomes equal

to the next larger processing time. To establish our result, it is

sufficient to show that when A varies between two existing processing times

4

pj and Pj+l with Pj <Pj+l, Z is a continuous piecewise linear function.

Before analyzing Z(A) for A [pjpj+l] we will make one more assumption

about the schedule produced by the heuristic. Whenever a job which is below

job 1 on the list is ready to be scheduled and there exists a choice of

machines to schedule this job on, we will always choose a machine not

containing job 1. This assumption does not effect the distribution of total

processing time among the machines and therefore does not effect Zo. Let us

refer to this assumption as the tie breaking assumption.

Since we are analyzing Z over an interval in which the order of the jobs

on the list remains unchanged, the only way the schedule can be affected is

by changes in the times on which machines become available. This is

illustrated in Figure 2 for the case of two machines M1 and M2.

1 a Ic d

I/:b e

I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11

1 b Ie |

/ I Ia d |

I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11

Figure 2: A switch of tails

The jobs a,b,c,d,e occur on the list in alphabetical order. When the

processing time of job 1 is increased by 1/ (O < u < 1) the schedule does not

change and Z increases linearly with slope one. For = 1, machines ill and

M2 become available at the same time, namely at the completion time of job

1. From our tie breaking assumption, jobs b, e are now scheduled on M1 and

5

=l1

uI=0

jobs a,c,d on M2. Note that Zr remains the same but the maximum machine,

i.e., the machine for which Z is attained, has changed. The motivation for

the tie breaking assumption is that a further increase of will now not

affect the schedule. We refer to the transformation depicted in Figure 2 as

a switch of tails. If ,u would increase to 4, then another switch of tails

would occur; job e would switch to M2. Note that Zr is constant for 1 < <3,

whereas Z' increases with slope one for 3< 1 < 4.

In general, it is easy to see that before a switch of tails occurs Z is

constant as long as job is not on the maximum machine. If the machine

containing job 1 becomes the maximum machine, then Zr increases with slope

one. A switch of tails does not affect the value of the makespan and after

a switch Z will be constant or increase with slope one depending on

whether or not job is on the maximum machine. This establishes the

desired result.

3. The SPT rule

According to the SPT rule jobs appear on the list in order of

non-decreasing processing time. Given processing times pj for job j,

j=1,2,...,n, with Pi <P2< ... <Pn, the SPT-schedule is illustrated in

Figure 3. For j=1,2,...,m we may assume that job j is scheduled on machine

j. Since M1 is the first machine which becomes available again, job m + is

scheduled on M1. Since PI + Pm+l > Pm machine M1 now is the maximum machine and

job m + 2 is scheduled on M2. Since P2 Pi and Pm+2 > Pm+l machine M2 now is the

maximum machine and job m+ 3 is scheduled on M3. Continuing this way we find

that an SPT-schedule can always be assumed to have the following structure:

job j is scheduled on machine Mi where i is given by i=[(j-l)modm]+l,

j=l,...,n, and the maximum machine is the machine processing job n.

6

Ml~~~~~~~~

M2 LZE

Mm- 1

MMm

m+l I 2m+1

m+2

2m- 1

1 2m l

Figure 3: SPT - schedule

Let us now consider the case that the processing time A of job 1 is

increased from zero to infinity.

It follows from the structure of the SPT-schedule that there will be at

most n different assignments of jobs to machines. This bound is attained if

P2< P3<... <Pn On each machine in the SPT-schedule either Frn/ml or Fn/ml -1

jobs are scheduled. The maximum machine will always be machine

[(n-1)modm]+l and always contains Fn/ml jobs. Therefore job 1 can be on the

maximum machine at most Fn/ml times. Since As PT can only have a slope of

one if in the corresponding interval job 1 is on the maximum machine, it

follows that ZPT has at most Fn/ml linear parts with slope one. Therefore

there can be no more than 2Fn/ml breakpoints of ZnPT, i.e., BPT<2 Fn /m l . It

is easy to see that if we take a problem instance with nmodm 1 and

P2<p3<... <Pn, then the upper bound on the number of breakpoints is

attained. As ZnPT is completely determined by its breakpoints and their

function value, we conclude that ZS PT can be computed in polynomial time.

4. The LPT rule

According to the LPT rule, jobs are assigned in order of decreasing

processing times. Again, let us assume that job 1 has processing time A,

and that P2 < P3< ... < Pn-

We first prove that the number of different LPT-assignments, APT, is at

7

most equal to 2 n-m, n>m. We do so by induction. For n = m, the statement is

trivial. Assume that the statement holds for n (n > m), and consider an

instance of the (n+l)-job problem. Compare this instance to the n-job

instance obtained by deleting job 2. By induction, it is possible to

partition the A-axis [O,oo) into at most 2n -m intervals, such that within

each interval the assignment of jobs to machines for this n-job instance

remains the same. How are the (n+l)-job assignments related to the n-job

ones?

To facilitate our analysis we define the minimum machine to be the machine

with minimal total processing time. QPT will denote the completion time of

the minimum machine as a function of A. Analogously to Section 2 one can

prove that QLPT is a continuous piecewise linear function.

First, assume that A P2. Thus, job 2 is the smallest one and hence assigned

last to the minimum machine of the n-job instance. Consider a particular

A-interval in which the assignment of the n-job instance does not vary.

What can happen to the minimum machine in such an interval? Its index can

only change once, namely when the initial minimum machine loses its status

due to the increase of A (the slope of QPT changes from one to zero).

Hence, each such interval generates at most two intervals for the (n+l)-job

instance and the corresponding assignments differ only in the assignment of

job 2.

Now, consider the A-interval [O,P2) for the (n+l)-job instance and let

[O, a) be the first A-interval for the n-job instance. Because the

assignment of the n-job instance does not change as long as A <p3, it holds

that [0 ,P2) is contained in [0, a). Analogously the assignment of the

(n+l)-job instance cannot change for A<P2. Hence, there will be at most two

different assignments in [0, a) if QPT has no breakpoint in (P2, a) (namely

one in each of the intervals [O,p2) and [p2,a)). So we are left with the

case that QnLPT has a breakpoint ft in (P2, a). At first sight there can be

three different assignments, corresponding to [0, p2), [P2,/I), and [,a).

However, we will show that the assignments on [0, P2) and [p2,M) are

identical.

8

M I 1 I I
M2 7//
M3 I

'7

Ml /

M 2
M3

M1 l/ I 1

M2///////

b: jobs 1,3,...,n

P2<A<p

c: jobs 1,2,...,n

P2<A<p

a: jobs 3,4,...,n

d: jobs 2,3,...,n e: jobs 1,2,...,n

O<A<p2

Figure 4: Schedules for AE[O,t).

In Figure 4.a the LPT-schedule of the jobs 3,..., n is given where we have

assumed that machines are numbered such that M i has no more total

processing time assigned to it than Mi+1, i=1,...,m-1. The difference

between the total processing time of M1 and M2 follows from the fact that

Qn PT has a breakpoint /e [O,a), i.e., M1 is the minimum machine as long as

the processing time of job 1 is less than or equal to u. The schedule of

the n-job instance on [p 2,1u) is given in Figure 4.b. On [p 2,/) the schedule

of the (n+l)-job instance is obtained from the n-job instance by scheduling

job 2 on the minimum machine (in this case M1). This schedule is given in

Figure 4.c. On [O,p2) the schedule of the jobs 2,3,..., n is given by

Figure 4.d. This schedule is obtained from the schedule in Figure 4.a by

scheduling the smallest job (job 2) on the minimum machine. Note that P2<P/.

On [0, P2) the schedule of the (n+l)-job instance is obtained by scheduling

job 1 on the minimum machine. This schedule is given in Figure 4.e. By

comparing the schedules in Figures 4.c and 4.e we establish that there is

only one assignment of jobs to machines on the interval [0,/u).

To summarize the discussion above we have shown that every A-interval of

9

M 2 ,
M3 I/////

Ml /z1 2111

MA> 3
M 3 w ~'//<<

the n-job instance corresponds to at most two such intervals of the

(n+l)-job instance. Therefore AT < 2 ALPT < 2nm+l and this establishes the

desired result.

Our final observation is that BPT, the number of breakpoints, is at most

equal to 2 ALPT and hence bounded by 2 n-m+1. The argument is simple: each

assignment defines at most two breakpoints for ZLnPT, the worst case being

the one in which the index of the maximum machine changes as a result of

the increase of A.

We now turn to the question whether the derived upper bounds of 2 n-m on the

number of different assignments and 2
n -m+ l on the number of breakpoints are

tight. The following example shows that this is the case for m=2.

Example 1

Suppose m=2 and the processing time of job j is pj=2j-2, j=2,...,n. Note

that Pj=k -2pk+l, j=3,...,n. This implies that ZLPT(0)=2n- 2 . If job 1 has a

processing time A> jn pj=2n-1-1, then job 1 is the only job scheduled on

the maximum machine. Therefore all breakpoints must lie in the interval

[0,2n-1-1]. We will prove that all subintervals on which ZPT is increasing

have a length of one. Since ZLPT(2n-1-1) _ZLPT(O) =2n-1-l-2n-2=2n-21, this

implies that there are 2n -1 breakpoints (including zero).

Assume that job 1 is scheduled on M1 and the total processing time on M1 is

given by C1(A); C2 denotes the total processing time of M2. It is

sufficient to prove that C(A)-C2<1 for all A[0,2n-1-1]. To prove this, we

will use the property that for the LPT-schedule the starting time of the

last job scheduled on M1 is less than or equal to the starting time of all

jobs with smaller processing time scheduled on M2. We distinguish between

two cases.

(i) Assume job 1 is the last job scheduled on M. Let the processing time

A of job 1 satisfy Pk < A<pk+ for some k (1 < k < n), where pl-0 and

Pn+l-2n-1. The property mentioned above yields C(A) -A <C2 - 2pj.

Hence,

k

C(A) - C 2 <- j= - Pk+l1 < 1l
j=2

10

__I _I_ IIl·YIIIIII_·.--L

where the last inequality follows from A <Pk+l-

(ii) Assume job k (k>2) is the last job scheduled on M1.

Then

C()-Pk< C 2 - E Pj
j=2

or

k-i
C(A) - C 2 <Pk - EP= 1.

j=2

We leave it to the reader to prove that there are 2 n-2 different

assignments to jobs to machines (see also Example 3). The assignment of

jobs with processing time Ae[21,21+2], 1=0,...,2n-2-1, for job 1 can be

computed as follows: if 2n-2+1=,n ai2i-2 with aie{O,1} (i.e., 2n-2+1 is
i=2

written in binary representation), then the set of jobs scheduled on M2 is

defined by {jlaj = 1}. An example with n = 4 was given in Section 2.

The upper bound of 2
n-m on the number of different assignments can also be

attained for m>2 as is shown in Example 2.

Example 2

Let N = n- (m- 2), pj = 2j -2 (j=2,3,...,N), pj = 2
N -1 (j=N+l,...,n). From Example 1

it follows that the m- 2 largest jobs will always be the only jobs scheduled

on their machine. This means that the number of different assignments of

jobs to machines is determined by the jobs 1,2,...,N on two machines. Using

the result of Example 1, we obtain 2 N-2= 2 n-m different assignments.

The upper bound of 2 n-m+1 on the number of breakpoints cannot be attained

for m > 2. We have been able to show that for n = 7 and m = 3 there are at most

14 breakpoints. The proof is rather long and tedious and is therefore

omitted. However, below we will give an example for which the number of

breakpoints is at least ()n - m+ 2 . This implies that in the worst case a

complete description of ZnPT is exponential in n-r.

Example 3

We first consider 2n jobs and 2 machines. The processing time of job 2 is a

positive integer P2, the processing times of jobs 3,4,...,2n satisfy

P2j+1 = 2+l - 3+ P2, P2j+2
= 2+l+2-3+2 (j=1,2,...,n-1). We consider the

11

processing time A of job 1 with A E [2n-2n-l, P2n+2-l-1]. In this interval

job 1 and job 2n are the two jobs with largest processing time and are

therefore scheduled on different machines. Assume job 1 is scheduled on M1.

We claim that for A = p 2n-2-l+2 1, (=0,...,2ni-1) the LPT-schedule can be

obtained by writing I in binary notation: if l="- ai2l1 (aiE{O,l1), then

the LPT-schedule is obtained by scheduling on M1 the subset of jobs given

by {1}u{2iJai=l}u{2i+ 1ai=0}.

The proof is as follows. We claim that if ai=1, then job 2i is scheduled on

M1 and job 2i +1 is scheduled on M2 , else job 2i is scheduled on M2 and job

2i+1 on M1. If we define an=0 and job 2n+l1 to be equal to job 1, then the

claim holds for an. Suppose the claim holds for ak, ak+l,... an, 2< k <n. The

total processing time on 1, of all jobs scheduled so far is given by C1

where

n-1
C =p -12n-1+2 L a(2i-' (the processing time of job 1)

C1 = 1i=1

n-1
+ E ai(2i+2i-1-3+p2) (all even jobs scheduled on M 1)

i =k

n-i
+ C (1-ai)(2+-3+p2) (all odd jobs scheduled on M1)

i = k

The total processing time C2 on M2 of all jobs scheduled so far is given by

n-l n-l

C2 = 2n+ C (1-ai)(2i+2i-l-3+p2)+ E ai(2i+l-3+p2) (1)
i=k i=k

Calculating C2 -C 1 we find

k-i
C 2 - C1 2k- 1 - ai 2i (2)

i =1

If akl= 1, then C2 <C1 and job 2k -1 can be scheduled on M2. Since
k-2 k-2

- i=lai 2 +P 2 kl= -i= ai2i+(2k-3+p2)>0, job 2k-2 is scheduled on M1.

If ak_ = 0, then C2 >C1 and job 2k-1 is scheduled on M1. Since

Ck-2 i - 2 k-l+p2k-_l>0, job 2k-2 is scheduled on M2.i=l i

This proves the claim. Also note that the total processing time of 2 is

12

_ ---̂----�LIYI�-·�·II�111 1111 �-_.4_.-1..1�.

one more than that of M1 , because (2) is also valid for k= 1.

From the tie breaking assumption and the fact that all data are integer it

follows that ZLPT is constant on [p 2n-2n-l+21, p2n+2n-1 +21+1]. On

[p2n-2n-21 +1, p2 n+2n-1 +2+2] ZLT must be increasing with slope one

because ZLnPT(p2n+2n-l+2l+2) - ZLT(p2 n+2n-1+2) = l. The proof of this fact is
n-i i 1

as follows: if is even then ai = O and l+l=Llai2i - with = and ai = ai

for i=2,...,n-1; if I is odd then there is a k such that ak=0, ai=1 for

i=l,...,k-i and l+l= n_ai2i-1 with ak = 1 , i =0 for i=l,...,k-1 and ai=ai

for i=k+l,...,n-1. In both cases we can calculate the difference between

ZLnPT(p2n+2n-1+2+2) and ZLPT(p 2n+2n-l+2l) by using expressions analogous to

(1), because we have already shown that the makespans are determined by the

completion time of MI2. Then the result follows directly.

To summarize, we have proved that exactly every integer value in

[p2n-2n-1, P2n+2n-1 -1] is a breakpoint of ZL2PT. Therefore the number of

breakpoints of ZLPT for this example is at least 2n .

For the case m > 2, take n jobs such that N = n - (m-2) is even, take 2 > 2N/2-1

P3,...,PN as defined above for the 2-machine case and PN+i,... , Pn equal to

the makespan for the 2-machine case when the processing time A of job 1

equals PN- 2 N/2-1 . The similarity to the 2-machine example will be clear.

When A equals PN- 2 N/2-1 jobs N + 1,...,n are all scheduled as the only jobs

on their machine and jobs 1,2,...,N are scheduled on the two remaining

machines, say M and M2, in the same way as in the 2-machine case. For

AE[pN-2N/2-1,pN+2/2-1-1] the jobs 1,2,...,n will be scheduled on M1 and

M2. This follows from the earlier result that for two machines

ZNPT(pN+2N 2/2-l1) ZNPT(N- 2 N/2-1) = 2 N/2-11. Since P2 is the smallest job

and P2> 2 N/2 -1 the result follows. Using the result for the 2-machine case

we conclude that there are at least ()NN = (V)nm+2 breakpoints of ZnPT

5. Permutation list scheduling rules

The upper bounds derived in the previous section are not valid for

arbitrary list scheduling heuristics. A counter-example is given by four

jobs with processing times Pl=A, p2= 2 , p 3 =3 and P4 =4 to be scheduled on

three machines using the permutation it(1) = 1, 7r(2) = 2, r(3) = 4 and r(4) = 3. For

13

__1·_1_1___

n = 4 and m = 3 the previously derived bounds on the number of assignments and

breakpoints are 2 n-m=2 and 2 n-m+1=4 respectively. However, this example has

four different assignments and six breakpoints of Z. Our main result of

this section is an upper bound of 2 n-m+l on the number of different

assignments of jobs to machines in a permutation list scheduling heuristic

for n jobs on m machines whenever the processing time of one job is varied.

As in Section 4 the result will be proved by induction on n (n>m). Although

the analysis in this section is very much of the same flavor as that

presented in Section 4, there is one complicating factor which has led us

to prove the upper bound for a more general class of problems.

To motivate this class of problems consider the problem instance defined by

a permutation rGSn+l, (q)= n+l (q5n+l), job 1 with processing time A and

job j with processing time pj, j=2,...,n+1, with P2<P3<... <Pn+l. When the

processing time of job 1, i.e. A, varies, three different situations occur:

(a) for O<A<pq job q is the last job scheduled and the remaining jobs are

scheduled according to aceS n defined by a(j)=r(j), j=l,...,q-1,

a(j) = (j+ 1), j=q,...,n. The processing times of the n-job instance

corresponding to the remaining jobs are A, P2 ... , Pq-, Pq+l,

Pq+2,' , Pn+la

(b) for Pq<p<Pq+l job 1 is the last job scheduled,

(c) for Pq+1I A < job q+l is the last job scheduled and the remaining jobs

are scheduled according to a E S n defined under (a). The processing

times of the n-job instance corresponding to the remaining jobs are A,

P2,-.., Pq-i, Pq, Pq+2, Pn+l

If we want to prove our result by induction on n, then it is obvious that

we have to use permutation a but it is not clear which processing times to

use since the processing times in (a) and (c) differ with respect to pq and

Pq+l.

The general class of problems is defined such that the data in (a) and (c)

belong to the same problem instance. The class of problems is defined as

follows:

14

_ _ _II ___I__I__Yql______Y__Il��··_(-···IPllllt _. --I__IYII�-L-·L�··l�1�1�--�1____ ·. -.

Given p, =A, P2 < p3... < P , 7rTESn and 0 t < t 2 < ... < t (s arbitrary), we

study the number of different assignments of jobs to machines when A

is increased from zero to infinity given the rule that whenever A =t i

for some i the current data changes in the sense that for the lowest

indexed job with a processing time greater than ti, its processing

time is permanently reduced to t i.

Note that at most n-1 t-values are effective, i.e., such that there is a

job such that the processing time of that job is decreased to that t-value.

This means that we may assume that s<n holds.

The problem instance defined by pl= A, P2,..., Pq-l, Pq+l, Pq+2,' ", Pn+l,

a, s = and t = pq, corresponds to (a) and (c) above for values of A given by

0 A< < pq and Pq+l <A < < respectively. The subset of this problem class obtained

by defining no t-values (s = 0) is the set of permutation list scheduling

problems we are ultimately interested in.

For a given instance we define the set of reassignment points by the union

of

- the set containing zero,

- the set of values of A not equal to a t-value for which a

reassignment of jobs to machines occurs and

- the set of effective t-values with the exception of those for which

job 1 and the job for which the processing time is reduced to this

t-value are the only jobs scheduled on their machines. (In general a

reassignment occurs if A becomes equal to a t-value, because job 1

and the job that has its processing time reduced swap positions in

the permutation. However, for the t-values that are excluded here

the assignment will clearly not change.)

Let us define an to be the maximum cardinality of a set of reassignment

points if we consider all n-job instances, all permutation list scheduling

heuristics and all values of s<n. Note that am=l1, since by definition all

t-values are not reassignment points in this case. Let us define bn to be

the maximum number of breakpoints of Q (the completion time of the minimum

machine) which occur strictly within the intervals defined by the

reassignment points if we consider all n-job instances and all permutation

list scheduling heuristics defined by a permutation 7rTESn. Note that within

15

_ ~ ~ ~ _ ~~~~~~ _ II-_L -- - ·1--·�11·114^11.·111· �LWY--*----··II Il*---L-llli-l

each interval Q is continuous and has at most one breakpoint. This implies

that bm = 1.

Proposition 1

For nm and an, b, an+l, bn+l defined as above the following holds:

an+l<an+bn+2 and an+1 +bn+l<2(an+bn)+2

Proof

Consider the problem instance defined by p,=A, P2<P3<... <Pn+l, 7rSn+l,

7r(q)=n+l, and tl,...,t 8. Define c and d to be the processing times of job q

and job q+l1 respectively at the end of the procedure in which A is varied

from zero to infinity. Let us first assume that q n+l and c<d. Three

different situations occur when A is varied:

(i) for O<A<c job q is the last job scheduled,

(ii) for c<A<d job 1 is the last job scheduled,

(iii) for d<A< oo job q+ 1 is the last job scheduled.

We will consider the n-job instance defined by p,=A, P2< ... <Pql <

< Pq+l < Pn+l, aE S n with a(j)= r(j), j=l,...,q- 1, a(j) = (j+ 1), j=q,...,n,

and t-values defined to ensure that the schedules obtained in (i) and (iii)

correspond to the first n jobs scheduled from the (n+l)-job instance. These

t-values must be such that the processing time of job q+l has to be reduced

to c and all other jobs are reduced to the same value as in the (n+l)-job

instance. This can be achieved by first deleting d from the set of t-values

of the (n+l)-job instance (if present) and then adding c to the remaining

set (if not yet present).

Consider the intervals defined by the set of reassignment points for the

n-job instance. If such an interval does not contain a breakpoint of Q,
there is a machine which is the minimum machine during the whole interval.

So adding a job to the minimum machine will lead to one assignment of jobs

to machines in such an interval. There are at most b intervals in which Qn

has a breakpoint. So we have at most bn additional reassignment points.

Therefore the total number of different reassignment points of the

(n+l)-job instance can be bounded by an+b n if we forget about the interval

[c,d). Let us see how this last interval fits into this picture. First, it

16

introduces at most two different reassignment points, namely c and d. Note

that there is only one assignment in the interval [c,d) since job 1 is

scheduled last. Therefore the number of different reassignment points for

the (n+l)-job instance is bounded by an+bn+2. This proves the first part of

the proposition.

As we have seen before, Q 1,, can have at most one breakpoint within an

interval defined by the set of reassignment points. Therefore, there can be

at most an + bn different breakpoints of Q7r + outside of the interval [c,d).

In [c, d) there can be at most one breakpoint of Q+l,, so that an upper

bound on the total number of reassignment points and breakpoints of Qn+l

would be 2(an+bn)+3, where the third term comes from c, d and the

breakpoint of Q 1r+l in [c,d). We will show that the constant 3 can be

reduced to 2. Note that the worst case of 3 additional points only occurs

when [c,d) does not contain a reassignment point or breakpoint of Q,

because otherwise the bound an+b n on the total number of different

reassignment points which was derived ignoring the interval [c,d), could be

lowered by at least 1. Therefore we may assume in the sequel that [c, d) is

strictly contained in an interval [e,f) for which the n-job instance does

not have a reassignment. It suffices to show that in that case Q+l does

not have a breakpoint in [c,d).

Since c is a t-value for the n-job instance and not a reassignment point,

it follows from the definition of reassignment points that job 1 with

processing time A=c and job q+1 (the job reduced to c) are scheduled each

as the only jobs on their machine, say machine M1 and M2 respectively. We

distinguish between two cases:

(i) Q is constant on [e,c).

There is a machine M3 which has a total processing time less than or equal

to e. This follows from the fact that machine M1 containing only job 1 has

a completion time of e at A = e and is increasing as A increases. When A = c we

know that the schedule obtained for the (n+1)-job instance is identical to

the schedule of the n-job instance with job 1 replaced by job q and job 1

placed on the minimum machine (in this case: M3). (See Figure 5.a). Since

M1 which only contains job q has a smaller completion time than M3 which

contains job 1, Q+l is constant on [c,d). Hence, no breakpoint occurs in

this interval.

17

_ ·�I_1_I Il�--�-�---·�L·�li�-PIU _L·m- .-.I.1I·

Ml1 1

M2 q+1

M3

I
0

MlI Z q_

L | M2

M3

I I I

e c Pq+1

L

0

I
q+1

;~ ///X I I

I I I

e c Pq+

a: Q is constant on [e,c)

M11 1

M21 q+l

M3 / I

I I I I I

0 eg C Pq+

M2 q+

I I I I I

0 eg c I

b: Q has a breakpoint ge(e,c)

Figure 5: Partial schedules at A = c;

on the left the n-job instance,

on the right the (n+1)-job instance.

(ii) Q has a breakpoint g (e,c).

A breakpoint at g implies that there is a machine 3 which has a total

completion time of g. This follows from the fact that for A>g the minimum

completion time remains constant. We are now in the same situation as in

(i). When A=c the schedule obtained for the (n+l)-job instance is identical

to the schedule of the n-job instance with job 1 replaced by job q and job

1 placed on the minimum machine (in this case: M3). Since M3 is not the

minimum machine for the (n+l)-job instance (M1 with completion time c is

smaller) there is again no breakpoint of Q+ 1 in [c,d). (See Figure 5.b.)

18

1 I

q+

.

-- �--

--

'II ^I�--Ua^ll-p�Y���YUU-^�·I)-YXYIL^ --LIYI�_�-I

1

This completes our proof for the case that r(n+ 1) n+ 1 and c d. The other

cases are easier to analyze and lead to the same result.

We are now able to establish the upper bound 2n-m+1 on the number of

different assignments when an arbitrary permutation list scheduling

heuristic is used. As we have pointed out before, we can take a = bm = 1.

For n > m we deduce that

an < an 1 + bn- 1 + 2

<[2(an_2+bn_2) +2] +2 = 2(an-2 + bn 2) + 4

< 2[2(an 3 + bn_3) + 2] + 4 = 4(an-3 + bn-3) + 8

2n-m-(am + b 2n-m 2n-m+1
<2 (a+b)+2 2 (3)

Of course, (3) implies the upper bound 2n-m+2 on the total number of

breakpoints of Zn for all permutation list scheduling rules r.

For m = 2 we can derive a tighter upper bound. This bound is valid for all

scheduling rules R for which Z is a continuous piecewise linear function

of the processing time of job 1 with linear parts that are constant or have

slope one. The constant term of the function describing a linear part of Zn

always equals the sum of processing times of a subset of the jobs

2,3,...,n. It also follows from the shape of ZR that each constant term can

occur at most once. Since there are only 2n-1 subsets of {2,3,...,n} this

leads to an upper bound of 2n-1 on the number of breakpoints. Note that

this bound is valid for all values of m >2, but it constitutes only an

improvement on the bound derived in this section for m= 2.

19

-- lI-·----·----- - . ~ r I-r-r---I-I- ·~ir~~.r~L-rrrru-^-·r-

6. Concluding remarks

Our worst case analysis on the number of different assignments of jobs on

machines and the number of breakpoints of Z has resulted in an interval

containing their maximal value. We have summarized the results in Table 1.

This table should be interpreted as follows. When a lower bound is given,

e.g. 2 n-m for the number of assignments this means that the maximum number

of assignments is Q2(2 n-m). An upper bound of 2 n-m on the number of

assignments means that the number of assignments is 0(2 n-m). A * indicates

a conjectured result.

Assignments Breakpoints
lower bound upper bound lower bound upper bound

Permutation
rules n* 2 n-m n/m* 2 n-m

LPT 2n -m 2n -m (V)n -m 2n - m

SPT n n n/m n/m

Optimal (W)n- m 2n (V)n - m 2n

Table 1: Summary of worst case analysis results

The lower bound for the number of assignments for the LPT-rule follows from

Example 1. The lower bound on the number of assignments and breakpoints for

any optimal algorithm follows from the fact that the LPT-schedule is

optimal for Example 3. The upper bounds for optimal algorithms follow from

the observation in the last paragraph of Section 5.

We conjecture that with respect to worst case analysis n is a lower bound

on the number of assignments and n/m a lower bound on the number

breakpoints for all permutation list scheduling heuristics. Note that if

the conjecture is true, the SPT-rule and LPT-rule are extreme cases of

permutation list scheduling heuristics in the sense that the number of

assignments corresponds to the lower bound respectively the upper bound

with respect to the overall class.

If we look at schedules instead of assignments, i.e., we also distinguish

between the order in which jobs are executed on a machine, the SPT-rule

20

1-"11" = Ipl �-· ·-IC--�-IIIIU·IIIIIU(iYllr_ �1_--I� ��I-._ ..

again is an extreme case. The SPT-schedule changes only when the order of

the processing time changes, i.e., there are only n different schedules.

Because permutation list scheduling heuristics are defined with respect to

the non-decreasing order of the processing time, n is a trivial lower bound

on the number of schedules.

Thus, we have found supporting evidence for the intuitively plausible

notion that the performance of an algorithm and its sensitivity are

correlated in that a good performance is identical with a high degree of

sensitivity. An important research question is how to formalize this

relationship between sensitivity and performance. To answer this question

we need a proper index to measure algorithmic sensitivity. The functions AH

and BH used in this paper are a first step in that direction.

References

Frenk, J.B.G., and Rinnooy Kan, A.H.G. (1987), "The asymptotic optimality

of the LPT rule", Mathematics of Operations Research 12, 241 - 254

Graham, R.L. (1966), "Bounds for certain multiprocessing anomalies", Bell

System Technichal Journal 45, 1563 - 1581

Graham, R.L. (1969), "Bounds on Multiprocessing Timing Anomalies", SIAM

Journal on Applied Mathematics 17, 263- 269

Lawler, E.L., Lenstra J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1989),

"Sequencing and scheduling: algorithms and complexity", Report 8934/A,

Erasmus University Rotterdam, Rotterdam, The Netherlands

Wagelmans, A.P.M., "Sensitivity Analysis in Combinatorial Optimization"

(1990), Ph.D. dissertation, Erasmus University Rotterdam, Rotterdam,

The Netherlands

21

_ _^1_·_1.._ �1-111_^__·_.- __.�__·

