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Abstract

A partial description of the convex hull of solutions to the economic

lot-sizing problem with start-up costs (ELSS) has been derived recently.

Here a larger class of valid inequalities is given and it is shown that

these inequalities describe the convex hull of ELSS. This in turn proves

that a plant location formulation as a linear program solves ELSS. Finally

a separation algorithm is given.
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1. Introduction.

Although the Economic Lot Sizing problem (ELS) as defined by Wagner and

Whitin [11], has proved to be useful in many production environments, it

does not capture all the properties of problems arising in this area. Due to

this, many generalisations and variants of ELS have been studied in the

literature, for instance ELS with backlogging and ELS in a multi-echelon

structure (see Zangwill [13]).

Here we consider a model with costs included for switching on a machine or

changing over between different items, the so-called startup costs.

Production problems in which these costs appear have been studied by Van

Wassenhove and Vanderhenst [10], Karmarkar and Schrage [6] and Fleischmann

[3]. The standard dynamic programming formulation of the Economic Lot-Sizing

problem with startup costs (ELSS) can be solved in O(n log n) time, where n

is the length of the planning horizon (see van Hoesel [4]).

Research on the polyhedral structure of ELSS was initiated by Wolsey [12].

He derived a partial description for ELSS by generalizing the

(I,S)-inequalities for ELS, developed in Barany et al. [2]. Here we

generalize these inequalities further to -the so-called (,S,T)-inequalities

and we show that these inequalities give a complete description of the

convex hull of ELSS. The proof technique that we use is due to Lovasz [7]:

the set of optimal solutions with respect to an arbitrary objective function

is shown to be contained in a hyperplane defined by one of the inequalities

of the model. This proof technique appears to be especially suitable for

problems where a greedy algorithm solves the dual linear program arising

from a complete polyhedral description of the problem.
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A related formulation of ELSS is the plant location model (PL), in which the

production variables are split. The inequalities for PL derived in [12] are

shown to imply the (,S,T)-inequalities, thereby proving that the linear

programming relaxation of PL solves ELSS.

In addition we discuss a separation algorithm for the (I,S,T)-inequalities

of ELSS by formulating the separation problem as a set of shortest path

problems. This algorithm has a running time of O(n 3).

2. Formulation of ELSS; the (,S,T)-inequalities

Consider a planning horizon consisting of the periods 1,...,n. The

nonnegative demand in period i is denoted by di. The unit costs in period i

are the production costs Pi, and the holding costs hi. The fixed costs in

period i are the setup costs and the startup costs, denoted by fi and gi

respectively. The startup cost is incurred in period i if a setup takes

place in period i and not in period i-1. ELSS is modeled using the

following variables:

Z, (i1 . -- n)' fI if a startup is incurred in period i
"( ') O otherwise

(1 if a setup is incurred in period i
otherwise

xi (i=1,...,n): the production in period i

s i (i=l,...,n): the inventory at the end of period i

In the following we denote the cumulative demand of the periods {i,..., j}

by dij , i.e. dij: =E =i d. This notation is also adopted for the cost
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parameters i.e. hij: = t=i ht.

The standard mixed integer program is

n
(ELSS) min (gizi+fiYi+Pixi+hisi)

i=1

s.t. x i + si-l = d i +s i

xi>O = yi=l 

yi=l A Zi =0 = i-l=l

Sn = 

(2.1)

(so: =0) (2.2)

(2.3)

(yo: =) (2.4)

(2.5)

yi,zi binary

xi,s i nonnegative

It is a straightforward matter to eliminate the inventory variables si.

From (2.2) it follows that si = =lx - di. Using the nonnegativity of s i

this gives j=lxj > dli. Moreover, since the ending inventory should be zero

by (2.5), we have jn=lxj=din. Finally, since the setup and startup

variables are binary, the inequalities (2.3) can be replaced by xi<dinyi

(i=1,...,n) and the inequalities (2.4) can be replaced by yi<Yi_-+zi

(i=l,...,n). Using ci: =pi + hin, this leads to

n
min . (gii+fiyi+cixi)

=I

i=1

xi > di

Xi < dinYi

Yi < Yi-1 + zi

(2.6)

(2.7)

(2.8)

(2.9)

(yo: = ) (2.10)

yi,zi binary
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x i nonnegative

An important structural property of the fixed cost variables in ELSS is the

following: if yi= 1 for some i{1,...,n} then there is a period j<i such

that zj=l;yj =...=yi=1. This follows by inductively applying (2.4). It leads

to the following simple but useful lemma.

Lemma 2.1.

Suppose yi=1 for some i in a feasible production plan. For any k<i at least

one of the following variables {Yk, Zk+l,Zk+2,...,zi} has value one.

Proof Let j < i be as above so that zj = 1, yj = ... = 1. If j < k then Yk = 1 and if

j>k, zj = 1. The claim follows.

The remainder of this section is devoted to the description of the

(l,S,T)-inequalities and a proof of their validity. Take an arbitrary

period I< n, and let L={1,... ,}. Now let SL and TcS, such that the first

element in S is also in T. We define the corresponding (,S,T)-inequality

as follows:

xi + E dilyi + dil(zp(i)+l+..+zi) > dll (2.11)

where p(i)=max{jcS: j<i}. If S{1,...,i-1}=0 then p(i)=O.

Example:l = 14; S = 4,7,8,10,12,13}; T = 4,10,12):

The coefficients of the inequality are given in the following table:

5

(i=l,...n)



i

Xi

Yi

Zi

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1

d41 do1 0 , d 12 ,1

d7 l d7 l dl d8 l d3,1

It should be noted that the inequalities derived in Wolsey [12] are a

special case of the (l,S,T)-inequalities in which all elements of

{p(i),...,i} lie in S. Therefore the above example is not included, because

periods 5 and 6 lie in L\S and p(7) =4.

Lemma 2.2

The (I,S,T) -inequalities are valid.

Proof. Take an arbitrary (,S,T)-inequality, and denote a feasible solution

to ELSS by {xi,yi,zii= 1,..., n}.

Case 1: S does not contain a period with positive production, i.e. xi=O for
I

ieS. Then xi= xi > dw1 .
ie\S i= 1

Case 2: S contains a period with positive production. Let j be the first

period in S, such that yj = 1. Now

xi Xi = Xi 2dj
ie S ie{1,.. . ,j-1}\S iE{1, . . .,j-1}

If jeT then i xi + djyj > dl,j 1+ dj = d11.

If jeS\T then denote the last element in {1,...,j-1}nT by k. Note that k

exists, since by definition the first element of S is in T. It is easily

seen that the following is part of the left-hand side of the

(I,S,T)-inequality.
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dklyk+ E dt(i),i Zi
i= k +1

(2.12)

Here t(i)EcS is such that ie{p(t(i))+l,...,t(i)}. Since jS it follows that

t(i)<j for i{k+l,...,j}. Therefore (2.12) is greater than or equal to

dj(Yk+zk+l+...+zj) . Since yj=l it follows from lemma 2.1. that

yt+ k++1 + ... + Zj > and therefore xi + dkIlyk+ t dt(,zi > dl,j-l + djl = d11.
i &\S i = + 1

[]

3. The convex hull of ELSS

Consider the following sets of valid inequalities:

n

, xi=dln
i=1

zi_ 1

yi 1

Yi < Yi- 1 + zi

xi O

zi>O

(Yo: =0)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

xi + E dilYi + T di (zp(i)+l+... +zi) dll (3.8)
ic L\S iET ieW\T

(For all I= 1,...,n, ScL and TcS such that the first element of S is in T.)

Note that the inequalities (2.8) are special cases of the

(I,S,T)-inequalities, where S = . The inequalities (2.9) can be derived from

(3.1) and (3.8), where S=T={i}. The remainder of this section will be

devoted to proving the following theorem:
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Theorem 3.1.

The set of inequalities (3.1)-(3.8) describes the convex hull of ELSS.

The technique we will use to prove the theorem is somewhat different from

the usual one. Such a proof has been proposed by Lovasz [7] for the

matching polytope. Basically the idea is to show that for any objective

function the set of optimal solutions to ELSS satisfies one of the

inequalities (3.2)-(3.8) at equality. Thus (3.2)-(3.8) must include all

facets of the convex hull of solutions.

In addition as we specify for each objective function which inequality is

satisfied at equality, one can use this proof technique to derive a greedy

algorithm that solves the linear programming dual of (3.1)-(3.8)

We consider an arbitrary cost function En=l(oixi + piyii+-rizi) and the

resulting set of optimal solutions M(ca,P,T) to ELSS.

Case 0: min{oeili=1,...,n}=6t0

As ilxi dln, we can remove 6 times the inequality (3.1) from the objective

function without changing the set of optimal solutions. Thus we can assume

that min{oaii = 1,...,n} = 0.

Case 1: i<O for some i{1,...,n}.

Any solution with zi= O can be improved by setting z i = 1. Thus

M(oe,,)c{(x,y,z) zi = 1}.

Case 2: i >0 for all i, i < 0 for some i.

i) Pi+Ti<O for some i.
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Any solution with yi =0 can be improved by setting yi =zi=l. Thus

M(O,P,y)c{(x, Y,Z)lyi = 1}).

ii) /i+yi>O for all i.

Let j=min{i pi < 0}. We show that M(o,P,T)c{(x,y,z)lj-l +zj =yj}. AsT > 0, any

solution with yj- = zj= 1 can be improved by setting zj=0. Also any solution

with yjl+zj=1 and yj=0 can be improved by setting yj =1. Thus the claim

follows.

We are left with objective functions satisfying min{aili= 1,...,n) = 0; i 2 >O

(i = ,...,n); i > O (i = ,...,n). Thus all solutions have nonnegative

objective value. In the rest of the proof it is important to look at the

"zero/positive" structure of the coefficients oci, Pi, yi.

We now look for the first period I having the property that the cost of

satisfying the demands dl,...,dl only equals the cost of satisfying all the

demands dl,...,d,. Observe that if m = = m... = k+l = k+l = 0 for some

m k+1, we certainly have that I< k.

If di+1=... = dk = 0, dk+l > 0 we must havem = Pm... = Pi+l = j+1= 0 for some

1+1<jk+l and m<k+l

Choice of 1: Define can+ = O, Pn+ = , Yn+l = O. First take I minimal such that

there exists an m 1 + 1 with Tm= = = ... P = C1+ + 1= 0.

Case 3:

i) If yi>O for i>m, M(c,f, T)c{(x,y,z)zi=}.

If fi > for i>1+1, M(o,, A,T)c{(x,y,z)yi = 0}.

If ci>O for i>l+1, M(a,P,y)c_{(x,y,z)Jxi=0}.
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ii) If d=0, then from the definition of I we have cl+Pl+-yt>O. The

argument applies as in case 3i) with i = I.

Now L={1,... ,} is determined with d>0O. For these objective functions we

now need to choose the sets S and T.

Choice of S: S: ={i<lloci=O}. Note that if I=n then S is not empty, since

there exists an i{1,...n} with c i = 0.

Case 4: If S=0, M(o,l,y)c{(x,y,z)lEi=l xi=d11).

Any solution with s >0 can be improved by reducing sl to zero as ci > 0 for

i=1,...,I. Note that I<n if S= 0, since there is an i{1,...,n} with ci= O.

For iS, let q(i)=max{j: jii and j>O} with q(i)=0 if p=... =P/i=O.

Case 5: Suppose q(i)=O for some iS. Let j be the first period with this

property. If y,+... +yj = O then ZS 1 xi = O = d1l, 1. If y,+... +yj >l then we can

produce in j at no cost and thus, since Col,...,ej-_> O from the minimality

of j we have sj-1 = 0 and therefore E=l xi = dlj-1.

Case 6: If Caq(i)>0 for some iS consider the smallest such i and let

k = q(i). Then M(o,P,)c_{(x,y,z)lyk+zk++ ... +Zi =Yi}.

First suppose that Yk+Zk+l+... +zi>2. Let t,u be the first two periods in

which the variables {yk,Zk+l, . ..,Zi} take value 1. Setting yt= .... = yu=l and

zu = 0 leads to a cost reduction as Pt+ = ... fl = u = 0, Tu > O, from the minimality

of 1.

Second suppose that k+Zk+l+... +z i = 1 and i = O. Then as Pk, k+l,...,Yi > O

from the definition of i, k and , either the solution can be improved by
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setting Yk+Zk+l+... +Zi= or production occurs in the interval k,...,i-l,

i-i
and thus Et-k Xt> . In the latter case consider si-1. If si_ >O the

solution can be improved by reducing sil by min{Et=k xt,si-l} as

<k,... ,ci-l> 0 and completing all production by setting yi = 1 and producing

in period i at zero cost. If si- l=O and y=O0 then di=O. But now di,,,l>0

cannot be satisfied at zero cost in periods i + 1,..., as otherwise I would

be smaller. Therefore again Yi = 1.

Now we have that cq(i) =O and q(i) >l for all iS-0. As q(i)=0O we have

q(i)eS.

Choice of T: T={q(i)iiS}0.

Note that the first element in S is also in T because if k = min{ilieS,

Oaq(i)S implies k=q(k)eT.

Case 7: We claim that the following (,S,T)-inequality

i\Sxi + d + iTd i i Tdil(zp(i)+l+... +z i) dl,
ie\S iET iS\T

is satisfied at equality for all points in M(o,,,y).

i) Suppose Yp(i)+Zp(i)++... +zi=O for all iS. So yi=O for all iS. If

sl>O, then as cei> for all ieL\S, the solution can be improved by reducing

sl to zero.

Now suppose there is an iT with yi=1 or an i with zi = 1 for iP(k) where

P(k)={p(k)+l,... ,k}, for some keS\T. Let j be the first such period i.
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ii) Suppose jET and yj=l. Then as cj=O, all production for periods j,...,l

can take place in period j at zero cost. Therefore necessarily xi = 0O for all

ieL\Sfl{j+ ,1,.}, y, i = O for all iETnl{j+1,...,l} and zi=O for all

i e [kES\T{p(k)+l1 .. k}l n {j+l,...,l}. In addition by the same argument

as in i) EteL\S Xt=dl,j- 1, and the claim follows.

iii) Suppose zj= 1 for jP(k) with kS\T. Then as fj = .. .fk= k= 0, all

production for periods k,..., can take place in period k at zero cost.

Therefore necessarily x i= O for all ieL\Sn{k + ... , }, yi = 0 for all

iETn{j+1,.. .. ,I} and zi=O for all i E [k U\T{P()+l,..,k}] {j+l,...,I}.

In addition by the same argument as in i) EteL\s xt = dl,k-l, and the claim

follows.

This ends the proof of theorem 3.1. and this section.

4. The Plant Location Reformulation

In this section we consider a reformulation in which the production

variables xi (i=l,...,n) are split as follows: for each ie{1,...,n} and for

each tE{i,...,n} the variable xit denotes the part of the demand dt that is

produced in period i. The connection with the original variables is simply

xi=t=i xit. The major advantage of this reformulation is that the model

allows for tighter constraints, since the production is disaggregated:

(PL) min . (gizi+fii +Ci EXit (4.1)
~i=l~ ~ t=i
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s.t. E xit=d t (t 1,.. ,n) (4.2)
i=l

xit<dtYi .. (i=l, n;t=i,...,n) (4.3)

Yi <Yi_1 + zi (Yo=0) (i= 1, ... ,n) (4.4)

yi,zi binary (i = 1,...,n)

xit nonnegative (i = 1,...,n;t = i,...,n)

The LP-relaxation of PL is not tight in the sense that it still allows

fractional solutions. By adding the following constraints, the so-called

(i 1,i2,t)-inequalities, we get a reformulation of ELSS which is at least as

strong as the formulation given in the previous section.:

Let 1 <i <i2 <t <n.
i2

dt(Yil+il+l + + zi2) > . xit (4.5)

These inequalities can be found in Wolsey [12]. The proof that these

inequalities, together with the inequalities (4.1)-(4.4), are at least as

strong as the (I,S,T)-inequalities constitutes the main part of this

section. This is shown by proving that the (,S,T)-inequalities are implied

by nonnegative linear combinations of the inequalities (4.2)-(4.5). We take

an arbitrary (,S,T)-inequality, thus let l<n; SL; TcS such that the first

element of S is in T.

Now take an arbitrary tL. The elements in Tn{l,...,t} are denoted by

tl<t 2 <... <tK<tK+1:=t+l. Now for each tkET, let sk be the largest element in

{tk,...,tk+l-1}nS. Note that tkES and therefore Sk is well defined. Summing

all (tk,sk,t)-inequalities for k = 1,... , gives:
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K i k K k
E dtyt + E IE diZ 2 E [ it

k=l k k=1 t t +1 kl i= tk
(4.6)

The first term in the left-hand side of (4.6) sums over the elements of

Tn{1,...,t}. The second term in the left-hand side of (4.6) sums over the

elements of Q(t) which is defined as [jUS\T{p(j)+l,...,j} n {1,...,t}.

Finally each element in Sn{1,...,t} is contained in {tk,...,Sk} for some

ke{1,...,K} and therefore the right-hand side of (4.6) is greater than or

equal to I xit . This gives
i{1, . .,t}nS

iEj{l.., t}fnT
+ ~ dtzi 

ie (t)
E it (4.7)

ie{1, .. ,t}nS

Addition of the inequalities (4.7) over all te{1,...,l} gives

I

E tE dtyi
t = 1 i~{-,. ., t}nT

I l

+ t dti > .. ,it}nS
t=1 iE(t) t= i { . ,t}rS

(4.8)

The first term in the left-hand side of (4.8) gives

I

iE dtyi
t=1 i{,..,t}jnT

(4.9)
I

T LZ dtyi = dilYi
ie t=i iE

For the second part of the left-hand side of (4.8) it holds that summing

over i only takes place for t such that iQ(t), i.e.

I I
L W dtzi = [ 1 dtz = j djl(zp(j)+l + 

t= i (t) i=1 :iEQ(t) jE T

The right-hand side of (4.8) is rewritten as follows, using (4.2):
1 1 d== t 1

ril d= E [xj = [ x it= +
l i =1 t =l i¢ .. ,t}nS i

zj) (4.10)

Moreover
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I I

t=1 iE{ ,. ,t)\S i{T,..,t}\S t=i

Xi
iE{ ,.. ,t}\S

and therefore

I

tSl i~ .,Xit
t=1 i,.. t}nS

I
= dl - Xit d

t = i .. , t}\S

Substituting (4.9)-(4.11) in (4.8) gives the desired (,S,T)-inequality.

The number of constraints in (PL) together with the (il,i 2,t)-inequalities

is O(n3 ). This number can be reduced to O(n2) by observing that there

always exists an optimal solution to ELSS in which the variables are such

that dt+lxit>dtxi,t+l for ie{1,...,n} and te{i,...,n}.

In fact the only (i1,i2 ,t)-inequalities that

t = i2. By induction it follows that

Multiplying the (il,i2,i2)-inequality by dt

gives
2

di2'dt(Yil+ Zil+l +' + i2 ) > dti-i.xii22 1 1 2 i~~~~i 1 2~

are

for

and

necessary

i <i2< t:

using the

are those with

dt.xi,i2 > di2*Xit.

last inequality

i 2

> di *.E it
2 i=il

and thus the (il,i 2,t)-inequality is implied, provided that di2 is positive.
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5. Separation for the (,S,T)-inequalities

Here we show that the separation algorithm for the (I,S,T)-inequalities can

be formulated as a shortest path problem.

We fix 1. Then we define three nodes for each period ie{1,... ,l}: ui, vi

and wi. Moreover, a starting node n and an ending node n are defined.

There are two arcs with no as a tail: (no,uo), and (n0,v0 ) both with zero

costs. Moreover there are three arcs with n as head: (ul,n 1), (vl,nl) and

(wl,n), also with zero costs.

To model the (,S,T)-inequalities in a network we define three types of

arcs.

Type 1: arcs (ui-l,ui), (vi 1,ui), (i 1,ui) with cost x i .

Type 2: arcs (i-,vi), (vi-,Vi), (i-,vi) with cost dily i.

Type 3: arcs (jl,wk), (wj1,wk) with cost i-=p(j)+l xi + dkl Fi=p(j)+l Zi.

FIGURE 1

It is readlily checked that each path in the network corresponds to the

left-hand side of a unique (,S,T)-inequality.In particular the nodes {vi}

and {w} define the sets T and S\T respectively. Therefore the shortest

path in the network is compared with d.

There are O(l2) arcs in the network, and since it is acyclic the shortest

path problem in the network can be solved in O(l2) time. Doing so for each

l < n gives an O(n3) algorithm, to find the most violated (,S,T)-inequality.

This is to be compared with the single max-flow calculation on a graph with

O(n 2 ) nodes derived in Rardin and Wolsey [9].
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