24 research outputs found
Micro-and macroencapsulation technologies for advanced B-cell replacement in type 1 diabetes mellitus.
175 p.La presente tesis doctoral está centrada en la mejora de las tecnologías de micro- y macroencapsulación celular basadas en alginato para su aplicación en el trasplante de células ß como tratamiento de la Diabetes Mellitus de tipo 1. Por un lado, la microencapsulación celular presenta una limitación técnica que impide su aplicación en la clínica, la cual reside en el gran volumen de microcápsulas necesario para obtener un efecto terapéutico. Esto es debido a la elevada cantidad de microcápsulas vacías que se generan durante el proceso de formación de las microcápsulas. Por otro lado, la macroencapsulación se ve limitada por el bajo control sobre el proceso de gelificación de los hidrogeles de alginato, lo que afecta drásticamente a su inyectabilidad cuando se quieren implantar mediante una inyección, o bien se quieren introducir en un dispositivo implantable. Además, los hidrogeles son frágiles y no pueden asegurar la supervivencia de las células ß a largo plazo. Para solventar estas dificultades y acercar a la clínica estas tecnologías, se han llevado a cabo los siguientes estudios:1) Desarrollo de un sistema de purificación de microcápsulas con el objetivo de reducir el volumen terapéutico de células ß encapsuladas.2) Modulación de las propiedades fisicoquímicas de los hidrogeles de alginato con el objetivo de controlar el proceso gelificación para mejorar la inyectabilidad sin afectar la elevada biocompatibilidad de este biomaterial para células ß.3) Desarrollo de un dispositivo de macroencapsulación biocompatible para proteger y estabilizar los hidrogeles de alginato desarrollados en el punto 2), y de esta manera aumentar la supervivencia de las células ß.NanoBioCel
Special issue: Plasma Medicine - part I
Peer ReviewedObjectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (published version
Interdisciplinarity: In the DNA of plasma medicine
Peer ReviewedObjectius de Desenvolupament Sostenible::3 - Salut i BenestarPostprint (author's final draft
Cultivos celulares 3D bajo condiciones de estimulación mecánica en el ámbito de la ingeniería de tejidos
En este proyecto, por un lado, se ha trabajado en la puesta a punto de una plataforma de chips microfluídicos para el cultivo celular. Por el otro lado se ha estudiado el glioblastoma multiforme (GMB) y el bajo efecto terapéutico de la temozolomida (TMZ), que constituye el fármaco de primera línea para tratar dicha enfermedad
Current state of cold atmospheric plasma and cancer-immunity cycle: therapeutic relevance and overcoming clinical limitations using hydrogels
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.Peer ReviewedPostprint (published version
Plasma-conditioned liquids in bone cancer therapy
Postprint (published version
Intrapericardial delivery of APA-microcapsules as promising stem cell therapy carriers in an experimental acute myocardial infarction model
The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing 30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI) was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks, MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac function, reflected by a higher LVEF at 10 weeks.Peer ReviewedPostprint (published version
3D Printed Porous Polyamide Macrocapsule Combined with Alginate Microcapsules for Safer Cell-Based Therapies
Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. However, the establishment of a way to retrieve the implanted encapsulated cells in case the treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination of micro and macroencapsulation approaches could provide the requirements to achieve a proper immunoisolation, while maintaining the cells localized into the body. We present the development and characterization of a porous implantable macrocapsule device for the loading of microencapsulated cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity defined by the design and the sintering conditions. Two types of microencapsulated cells were tested in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were produced and, importantly, released to the media were stable.This work was done under the BIOPAN project (CIBER-BBN). Authors wish to thank the intellectual and technical assistance from the ICTS "NANBIOSIS", more specifically by the Drug Formulation Unit (U10) and the Micro-Nano Technology Unit (U8) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBERBBN). Also, they thank the support to research on cell microencapsulation from the University of the Basque Country UPV/EHU (EHUA 16/06) and the Basque Country Government (Grupos Consolidados, No ref: IT907-16). The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) (Spain) through Ramon y Cajal program (RYC-2013-14479). This work has made use of the Spanish ICTS Network MICRONANOFABS partially supported by MINECO
Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering
3D-bioprinting is an emerging technology of high potential in tissue engineering (TE), since it shows effective control over scaffold fabrication and cell distribution. Biopolymers such as alginate (Alg), nanofibrillated cellulose (NC) and hyaluronic acid (HA) offer excellent characteristics for use as bioinks due to their excellent biocompatibility and rheological properties. Cell incorporation into the bioink requires sterilisation assurance, and autoclave, β-radiation and γ-radiation are widely used sterilisation techniques in biomedicine; however, their use in 3D-bioprinting for bioinks sterilisation is still in their early stages. In this study, different sterilisation procedures were applied on NC-Alg and NC-Alg-HA bioinks and their effect on several parameters was evaluated. Results demonstrated that NC-Alg and NC-Alg-HA bioinks suffered relevant rheological and physicochemical modifications after sterilisation; yet, it can be concluded that the short cycle autoclave is the best option to sterilise both NC-Alg based cell-free bioinks, and that the incorporation of HA to the NC-Alg bioink improves its characteristics. Additionally, 3D scaffolds were bioprinted and specifically characterized as well as the D1 mesenchymal stromal cells (D1-MSCs) embedded for cell viability analysis. Notably, the addition of HA demonstrates better scaffold properties, together with higher biocompatibility and cell viability in comparison with the NC-Alg scaffolds. Thus, the use of MSCs containing NC-Alg based scaffolds may become a feasible tissue engineering approach for regenerative medicine.Author thanks the Basque Government for granted fellowship to S.
Ruiz-Alonso (PRE_2020_2_0143). This study was financially supported
by the Basque Country Government (IT907-16), the Ministerio de
Economía, Industria y Competitividad (FEDER funds, project RTC-2016-
5451-1), Fundación Mutua Madrileña (project FMM-AP17196-2019),
the Instituto de Salud Carlos III, ERDF funds (DTS19/00145) and by
the Consejería de Economía, Conocimiento, Empresas y Universidad,
Junta de Andalucía (project no. PY18-2470 and SOMM17/6109/UGR,
FEDER Funds). Authors also wish to thank the intellectual and technical
assistance from the ICTS “NANBIOSIS”, more specifically by the Drug
Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials &
Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/
EHU