381 research outputs found

    In vitro bioaccessibility of proteins and lipids of pH-shift processed Nannochloropsis oculata microalga

    Get PDF
    The pH-shift process fractionates biomass into soluble proteins and insoluble fractions, followed by precipitation and recovery of the solubilized proteins. Nannochloropsis oculata in seawater was subjected to the pH-shift process, followed by digestion of various intermediates and product fractions of the process, using the Infogest in vitro digestion model (Minekus et al., 2014) with added gastric lipase. As measures for protein and lipid accessibility, degrees of protein hydrolysis and fatty acid liberation were assessed post-digestion and compared to the amounts of peptide bonds and total fatty acids present in the raw materials. Results showed that neither proteins nor lipids of intact Nannochloropsis cells were accessible to the mammalian digestive enzymes used in the digestion model. Cell disruption, and to a lesser extent, further pH-shift processing with protein solubilisation at pH 7 or pH 10, increased the accessibility of lipids. For proteins, differences amongst the pH-shift processed materials were non-significant, though pre-freezing the product prior to digestion increased the accessibility from 32% to 47%. For fatty acids, pH-shift process-products gave rise to 43% to 52% lipolysis, with higher lipolysis for products solubilised at pH 10 as opposed to pH 7. Our results indicate the importance of processing to produce an algal product that has beneficial nutritional properties when applied as food or feed

    Biochemical composition of red, green and brown seaweeds on the Swedish west coast

    Get PDF
    Seaweed biomass has the potential to become an important raw material for bio-based production. The aim of this study was to screen the overall composition of several seaweed species on the Swedish west coast, including some scarcely studied species, to provide fundamentals for evaluation of biorefining potential and to benchmark with already potentially industrially relevant species and commercially important land-based biomasses. Twenty-two common seaweed species (green, red, brown) were collected and the carbohydrate, ash, protein, water and metal contents were measured. Carbohydrate content varied between 237 and 557\ua0g\ua0kg−1 dry weight (dw), making it the largest constituent, on a dry weight basis, of most species in the study. Ash, which is considered unwanted in biorefining, ranged between 118 and 419\ua0g\ua0kg−1 dw and was the largest constituent in several seaweeds, which were therefore considered unsuitable for biorefining. Protein content was most abundant in the red seaweeds but was generally low in all species (59–201\ua0g\ua0kg−1 dw). High contents of several unwanted metals for processing or human consumption were found (e.g. aluminium, arsenic, copper, chromium and nickel), which need to be considered when utilizing seaweeds for certain applications. Potential targets for further biorefinery development mostly include species already known for their potential (Saccharina latissima, Laminaria digitata and Chondrus crispus) while some, such as Halidrys siliquosa and Dilsea carnosa, have not been previously noted. However, more detailed studies are required to explore biorefinery processes for these seaweeds, as well as how to potentially cultivate them

    Understanding the effect of temperature and time on protein degree of hydrolysis and lipid oxidation during ensilaging of herring (Clupea harengus) filleting co-products

    Get PDF
    The aims of this study were to investigate the effect of temperature, time and stirring on changes in protein degree of hydrolysis (DH), free amino acids (FAA), lipid oxidation and total volatile basic nitrogen (TVB-N) during ensilaging of herring (Clupea harengus) filleting co-products. Results showed that temperature and time, and in some cases the interaction effect between these two factors, significantly influenced all the studied responses. Increasing ensilaging temperature and time from 17 to 37 \ub0C and 3 to 7 days, respectively, increased DH, FAA, and TVB-N content from 44.41 to 77.28%, 25.31 to 51.04 mg/g, and 4.73 to 26.25 mg/100 g, respectively. The lipid oxidation marker 2-thiobarbituric acid reactive substances (TBARS) did not increase with time at temperatures above 22 \ub0C, while 2-pentylfuran increased up to 37 \ub0C. Based on the process parameters and responses investigated in this study, and considering energy requirements, it was suggested to perform ensilaging at ambient temperatures (i.e. around 20 \ub0C) with continuous stirring at 10 rpm for 1-3 days; the exact length being determined by the desired DH

    Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits

    Get PDF
    The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries

    Cultivation of microalgae- Chlorella sorokiniana and Auxenochlorella protothecoides- in shrimp boiling water residues

    Get PDF
    Based on the ability of microalgae to purify industrial processing waters, the overall aim of this study was to evaluate whether currently wasted shrimp processing waters could be used as microalgal growth media to produce new protein-enriched food and feed ingredients. Low molecular weight (LMW) fractions of shrimp boiling water (SBW) which had been pre-flocculated using alginate (AL), carrageenan (CA), chitosan (CH) or Superfloc C-592 to recover shrimp protein via flotation, were used for cultivation of Chlorella sorokiniana and Auxenochlorella protothecoides to produce a protein-enriched microalgal biomass. CH-derived media induced the highest growth rates for both species with A. protothecoides out-performing C. sorokiniana. A. protothecoides best assimilated phosphate-phoshorous (P-PO4) and total phosphorous (TP) in all media; <63 mg/L and < 45 mg/L after 4 days, respectively. In upscaled aerated cultures of A. protothecoides in CH- and AL-derived media, P and TP uptake increased up to 85 and 127 mg/L, respectively. Further, 63% of the free amino acids (AA) were assimilated in both waters. Biomasses derived from SBW contained 37-43% protein and 15.0-17.4% fatty acids (FA) per DW; with 38-40% essential AA (EAA) and 21.3-22.5% polyunsaturated FA (PUFA), respectively Corresponding numbers for biomass cultivated in control media were 11 and 53%, protein and FA, respectively, and with 38% and 15.6% EAA and PUFA, respectively. Ability of A. protothecoides to assimilate TP and AA, and to generate a protein-rich biomass from LMW-fractions derived from SBW was thus revealed for the first time, and paves the way for a SBW-based biorefinery comprising chemical, physical and microbial processes to produce multiple products

    Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contamination of bacteria in large-scale yeast fermentations is a serious problem and a threat to the development of successful biofuel production plants. Huge research efforts have been spent in order to solve this problem, but additional ways must still be found to keep bacterial contaminants from thriving in these environments. The aim of this project was to develop process conditions that would inhibit bacterial growth while giving yeast a competitive advantage.</p> <p>Results</p> <p>Lactic acid bacteria are usually considered to be the most common contaminants in industrial yeast fermentations. Our observations support this view but also suggest that acetic acid bacteria, although not so numerous, could be a much more problematic obstacle to overcome. Acetic acid bacteria showed a capacity to drastically reduce the viability of yeast. In addition, they consumed the previously formed ethanol. Lactic acid bacteria did not show this detrimental effect on yeast viability. It was possible to combat both types of bacteria by a combined addition of NaCl and ethanol to the wood hydrolysate medium used. As a result of NaCl + ethanol additions the amount of viable bacteria decreased and yeast viability was enhanced concomitantly with an increase in ethanol concentration. The successful result obtained via addition of NaCl and ethanol was also confirmed in a real industrial ethanol production plant with its natural inherent yeast/bacterial community.</p> <p>Conclusions</p> <p>It is possible to reduce the number of bacteria and offer a selective advantage to yeast by a combined addition of NaCl and ethanol when cultivated in lignocellulosic medium such as wood hydrolysate. However, for optimal results, the concentrations of NaCl + ethanol must be adjusted to suit the challenges offered by each hydrolysate.</p

    An energy and resource efficient alkaline flocculation and sedimentation process for harvesting of Chromochloris zofingiensis biomass

    Get PDF
    Harvesting microalgal cultures is often energetically intensive and costly. To improve efficiencies, a two-step harvesting method utilising alkaline flocculation and sedimentation to pre-concentrate cultures can be used prior to centrifugation. When applied to the microalga Chromochloris zofingiensis, high rates of sedimentation (&gt;90%) were found at low concentrations of base (&lt;10 mM), with the addition of magnesium to the media (via NaOH/MgSO4 or Ca(OH)2/Mg(OH)2) to form Mg(OH)2. The process was scaled to 180 L, where sedimentation was as efficient as that achieved at bench scale. Characterisation of the harvested biomass showed comparable composition (following neutralisation of pH) to biomass recovered solely by centrifugation. The alternative two-step processes were assessed for environmental impacts and cost, which indicated that a two-step harvesting generally performs better than centrifugation alone, but that the locally available electricity source is a critical parameter for optimal solution

    Evaluation of Laminaria digitata and Phragmites australis for biogas production and nutrient recycling

    Get PDF
    Eutrophication and climate change are major global problems. The sea weed Laminaria digitata and the reed Phragmites australis have the potential to absorb nutrients and CO2 during growth, as well as being a source of renewable energy in the form of biogas. The aim of this study was to evaluate Laminaria digitata and Phragmites australis concerning biogas production and nutrient recycling using a two-stage pilot scale process. The plant has a total volume of 430 L and consists of a hydrolysis bed and an up-flow anaerobic sludge blanket reactor (UASB). Two experiments were performed; one with Laminaria digitata as the sole substrate and one with a mixture of Laminaria digitata and Phragmites australis. Frozen substrates were placed in the hydrolysis bed and digestion was performed at 305 K during 70 days for Laminaria digitata and 100 days for the mixture of Laminaria digitata and Phragmites australis. The methane yield achieved was approximately 170 L kg−1 volatile substances (273.15 K, 101.3 kPa) in both experiments. These results suggest that Laminaria digitata can be efficiently digested in larger scale and has the potential to contribute to a future sustainable energy mix, considering its relatively high methane yield when anaerobically digested as the sole substrate. Digestion of Phragmites australis needs further development to make use of its full potential

    Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2–dependent RNA granules

    Get PDF
    Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon–glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE–containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon–glia contact and myelin deposition

    Closed life-cycle aquaculture of sea lettuce (Ulva fenestrata): performance and biochemical profile differ in early developmental stages

    Get PDF
    Sea lettuce (Ulva) aquaculture has increased the last decade due to high productivity, wide environmental tolerance, and interesting functional and nutritional properties of the crop. Research focus has mainly been on adult biomass production, but knowledge of performance and biochemical content of early developmental stages – which are the basis to any large-scale production - is still limited. The life-history of Ulva alternates between a diploid sporophytic life-stage and a haplontic gametophytic life-stage. Whereas the sporophyte give raise to recombinant gametophytes through zoids, gametophytes can give raise to parthenogenetically developing, clonal gametes in absence of a mating partner. This study shows that recombinant gametophytes have a faster ontogenetic development, higher growth rate, as well as higher protein, fatty acid, and pigment contents compared to clonal gametophytes of the crop Ulva fenestrata. Nutrient addition is required for a normal development, but temperature and swarmer density have relatively small effects on the hatchery success, relative growth rate and biochemical profile of the juvenile biomass. Our study reveals that the selection of the life-history-phase in novel sea lettuce crop strains could largely contribute to the emerging seaweed aquaculture sector
    corecore