30 research outputs found

    Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

    Get PDF
    Deep learning; Disability; Structural MRIAprendizaje profundo; Discapacidad; Resonancia magnética estructuralAprenentatge profund; Discapacitat; Ressonància magnètica estructuralThe application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.MS PATHS is funded by Biogen. This study has been possible thanks to a Junior Leader La Caixa Fellowship awarded to C. Tur (fellowship code is LCF/BQ/PI20/11760008) by “la Caixa” Foundation (ID 100010434). The salaries of C. Tur and Ll. Coll are covered by this award

    The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentition block or confers abnormal migration properties in a ligand-dependent manner

    No full text
    Cb2, the gene encoding the peripheral cannabinoid receptor, is located in a common virus integration site and is overex-pressed in retrovirally induced murine myeloid leukemias. Here we show that this G protein-coupled receptor (GPCR) is also aberrantly expressed in a high percentage of human acute myeloid leukemias. We investigated the mechanism of transformation by Cb2 and demonstrate that aberrant expression of this receptor on hematopoietic precursor cells results in distinct effects depending on the ligand used. Cb2-expressing myeloid precursors migrate upon stimulation by the endocannabinoid 2-arachidonoylglycerol and are blocked in neutrophilic differentiation upon exposure to another ligand, CP55940. Both effects depend on the activation of G(alphai) proteins and require the mitogen-induced extracellular kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. Down-regulation of cyclic adenosine monophosphate (cAMP) levels upon G(alphai) activation is important for migration induction but is irrelevant for the maturation arrest. Moreover, the highly conserved G protein-interacting DRY motif, present in the second intracellular loop of GPCRs, is critical for migration but unimportant for the differentiation block. This suggests that the Cb2-mediated differentiation block requires interaction of G(alphai) proteins with other currently unknown motifs. This indicates a unique mechanism by which a transforming GPCR, in a ligand-dependent manner, causes 2 distinct oncogenic effects: altered migration and block of neutrophilic development

    C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence

    Get PDF
    10.1038/ncb2698Nature Cell Biology154385-394NCBI
    corecore