2,217 research outputs found

    The impact of software development companies on software engineers' responses to incomplete requirements

    Get PDF
    Cataloged from PDF version of article.It is commonly accepted that software requirements quality affects software product quality, and high-quality software products depend on complete requirements. With incomplete requirements, depending on the requirement software engineers attempt to fi ll gaps differently; either by getting feedback from the user or by making assumptions. Assumptions may be explicit or implicit. Explicit assumptions are preferable to implicit assumptions because explicit assumptions can be validated. We conduct an empirical study to determine whether the number of explicit assumptions made by software engineers is related to the companies that the engineers work for. Using data from eight companies we investigate the responses of 251 software engineers to the same incomplete software requirement. The results of the study show a signifi cant relationship between a software development company and the number of explicit assumptions made by the engineers who work for that compan

    Investigation of individual factors impacting the effectiveness of requirements inspections: a replicated experiment

    Get PDF
    Cataloged from PDF version of article.This paper presents a replication of an empirical study regarding the impact of individual factors on the effectiveness of requirements inspections. Experimental replications are important for verifying results and investigating the generality of empirical studies. We utilized the lab package and procedures from the original study, with some changes and additions, to conduct the replication with 69 professional developers in three different companies in Turkey. In general the results of the replication were consistent with those of the original study. The main result from the original study, which is supported in the replication, was that inspectors whose degree is in a field related to software engineering are less effective during a requirements inspection than inspectors whose degrees are in other fields. In addition, we found that Company, Experience, and English Proficiency impacted inspection effectiveness

    Effect of Hygroscopicity of the Metal Salts on the Formation and Air Stability of Lyotropic Liquid Crystalline Mesophases in Hydrated Salt-Surfactant Systems

    Get PDF
    Cataloged from PDF version of article.It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)(j)OH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that the other parameters are secondary and less significant. Accordingly, salts can be divided into 3 categories: Type I salts (such as LiCl, LiBr, LiI, LiNO3, LiClO4, CaCl2, Ca(NO3)(2), MgCl2, and some transition metal nitrates) have low %DRH and form stable salt-surfactant LLC mesophases in the presence of a small amount of water, type II salts (such as some sodium and potassium salts) that are moderately hygroscopic form disordered stable mesophases, and type III salts that have high %DRH values, do not form stable LLC mesophases and leach out salt crystals. To illustrate this effect, a large group of salts from alkali and alkaline earth metals were investigated using XRD, POM, FTIR, and Raman techniques. Among the different salts investigated in this study, the LiX (where X is Cl-, Br-, I-, NO3-, and ClO4-) and CaX2 (X is Cl-, and NO3-) salts were more prone to establish LLC mesophases because of their lower %DRH values. The phase behavior with respect to concentration, stability, and thermal behavior of Li(I) systems were investigated further. It is seen that the phase transitions among different anions in the Li(I) systems follow the Hofmeister series. (C) 2014 Elsevier Inc. All rights reserved

    A New, Highly Conductive, Lithium Salt/Nonionic Surfactant, Lyotropic Liquid-Crystalline Mesophase and Its Application

    Get PDF
    Cataloged from PDF version of article.Salty water! Lithium salts (LiCl, LiNO3, and LiClO4) at very high concentrations in water form lyotropic liquid crystalline (LLC) mesophases with a nonionic surfactant (10-lauryl ether) and display high ionic conductivities (10−2–10−4 S cm−1) over a broad temperature range (−10 to 80 °C) with excellent behavior as gel electrolytes in electrochemical applications

    Origin of Lyotropic Liquid Crystalline Mesophase Formation and Liquid Crystalline to Mesostructured Solid Transformation in the Metal Nitrate Salt-Surfactant Systems

    Get PDF
    Cataloged from PDF version of article.The zinc nitrate salt acts as a solvent in the ZnX-C(12)EO(10) (ZnX is [Zn(H(2)O)(6)](NO(3))(2) and C(12)EO(10) is C(12)H(25)(OCH(2)CH(2))(10)OH) lyotropic liquid crystalline (LLC) mesophase with a drastic dropping on the melting point of ZnX. The salt surfactant LLC mesophase is stable down to -52 degrees C and undergoes a phase change into a solid mesostructured salt upon cooling below -52 degrees C; no phase separation is observed down to -190 degrees C. The ZnX-C(12)EO(10) mesophase displays a usual phase behavior with an increasing concentration of the solvent (ZnX) in the media with an order of bicontinuous cubic(V(1))-2D hexagonal(H(1)) - a mixture of 2D hexagonal and micelle cubic(H(1) + I)-micelle cubic(I)-micelle(L(1)) phases. The phase behaviors, specifically at low temperatures, and the first phase diagram of the ZnX-C(12)EO(10) system was investigated using polarized optical microscopy (POM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and Raman techniques and conductivity measurements

    The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics

    Get PDF
    Cataloged from PDF version of article.Tri-block copolymers (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), represented as EOxPOyEOx), pluronics (F127=EO106PO70EO106, P65=EO20PO30EO20, P85=EO27PO39EO27, P103= EO17PO55EO17, and P123 = EO20PO70EO20) and cationic surfactants (cethyltrimethylammonium bromide (CTAB)), two surfactant systems, form complex micelles that self-assemble into mesostructured particles with distinct morphology depending on the pluronic type, the concentration of the cationic surfactant and the organic-inorganic ingredients in a siliceous reaction media under acidic conditions. The CTAB-P65 and CTAB-P85 systems form spheres, CTAB-P103 and CTAB-P123 systems form wormlike particles, and CTAB-F127 system form single crystals of mesostructured silica particles under very similar conditions. However addition of various salts (such as KCI and NaNO3) into a CTAB-P103 or CTAB-P123 solution system and cyclohexane and KCI into a CTAB-P85 solution system produces the mesostructured silica spheres and wormlike particles, respectively. By controlling the hydrophilic-hydrophobic character of the pluronics, core-corona interface, by means of additives, such as small organic molecules or salts, one could obtain the desired morphology that is dictated by the shape of the micelles of the pluronic-cationic surfactant complex. The effects of the additives and the formation mechanism of those morphologies have been discussed using spectroscopy (FT-IR and Raman), diffraction (XRD) and microscopy (POM and SEM) data. (c) 2008 Elsevier Inc. All rights reserved

    Solutions to challenges of teaching "systems analysis and design" for undergraduate software engineers

    Get PDF
    This study is an enhancement of previous research presented at the 2nd AIS SIGSAND European Symposium on Systems Analysis and Design and its improved version presented at the 3rd National Software Engineering Symposium (UYMS) 2007. The AIS-SIGSAND 2007 study, the first phase, was part of on-going research by which systems analysis and design-teaching experiences related to course evaluation items were enlightened. This study summarizes previous studies and introduces new findings suggested by those studies that relate to teaching challenges on systems analysis and design in software engineering. The first challenge studied is to decide a suitable evaluation item set in undergraduate level system analysis and design courses for software engineers. The second challenge relates to implicit assumptions made by software engineers during the analysis phase. Based on pre-interview, test, and post-interview data, the study presents a snapshot of an analysis in software engineering regarding implicit assumptions made by analysts. Related to these challenges, the study concludes with proposals on systems analysis and design education. © 2009, IGI Global

    An experiment to observe the impact of UML diagrams on the effectiveness of software requirements inspections

    Get PDF
    Software inspections aim to find defects early in the development process and studies have found them to be effective. However, there is almost no data available regarding the impact of UML diagram utilization in software requirements specification documents on inspection effectiveness. This paper addresses this issue by investigating whether inclusion of UML diagrams impacts the effectiveness of requirements inspection. We conducted an experiment in an academic environment with 35 subjects to empirically investigate the impact of UML diagram inclusion on requirements inspections' effectiveness and the number of reported defects. The results show that including UML diagrams in requirements specification document significantly impacts the number of reported defects, and there is no significant impact on the effectiveness of individual i nspections. © 2009 IEEE
    corecore