
272 International Journal of Information Studies � Volume 1 Issue 4 � October 2009

The Impact of Software Development Companies on Software Engineers’
Responses to Incomplete Requirements

Ozlem Albayrak, Duygu Albayrak
Department of Computer Technology & Information Systems

Bilkent University
06800 Bilkent, Ankara Turkey

ozlemal@bilkent.edu.tr

International Journal of Information Studies � Volume 1 Issue 4 � October 2009 273

The Impact of Software Development Companies on Software Engineers’
Responses to Incomplete Requirements

Ozlem Albayrak, Duygu Albayrak
Department of Computer Technology & Information Systems
Bilkent University
06800 Bilkent, Ankara. Turkey
ozlemal@bilkent.edu.tr

ABSTRACT: It is commonly accepted that software requirements quality affects software product quality, and high-quality
software products depend on complete requirements. With incomplete requirements, depending on the requirement software
engineers attempt to fi ll gaps differently; either by getting feedback from the user or by making assumptions. Assumptions
may be explicit or implicit. Explicit assumptions are preferable to implicit assumptions because explicit assumptions can be
validated. We conduct an empirical study to determine whether the number of explicit assumptions made by software engineers
is related to the companies that the engineers work for. Using data from eight companies we investigate the responses of
251 software engineers to the same incomplete software requirement. The results of the study show a signifi cant relationship
between a software development company and the number of explicit assumptions made by the engineers who work for that
company.

Keywords: Software developments, Software quality

Received: 1 June 2009, Revised 12 July 2009, Accepted 18 July 2009

1. Introduction

The quality of a software product is an important factor in the success of a software project. Although every software organi-
zation aims to develop software that meets functional needs with acceptable levels of quality within budget, and on schedule
(Agrawal, 2007; Noppen, Broek & Aksit 2008), only some of them succeed. Defi cient and low-quality requirements may
be the major reason for software project failures (Cheng & Atlee, 2007; Zagjsek & Separovic, 2007; Hoffman & Lehner,
2001; Saiedian & Dale, 2000; Kamata & Tamai, 2007; Rowen, 1990; Yeh & Zave, 1980). Quality of software requirements
is measured by eight attributes: Correctness, unambiguity, completeness, consistency, ranking, verifi ability, modifi ability,
and traceability (IEEE, 1998, Agrawal, 2007). Complete and correct requirements specifi cations are required for developers
to know what to build and for users to know what to expect (Saiedian & Dale, 2000; Rowen, 1990).

In this study, we focus on the completeness attribute of software requirements. A complete software requirement should contain
all necessary information, including constraints and conditions. When software engineers face incomplete requirements, they
attempt to fi ll the gaps by information from the stakeholders or by assumptions. When information from the stakeholders is not
available, the engineers make assumptions. Their assumptions may be explicitly stated, and thus documented, or implicitly carried
further, to the design and implementation phases, where there is a high probability that the related requirements will be incorrect.
For high-quality requirements, software engineers should aim to fi ll software requirements’ gaps with explicit assumptions. The
problems caused by implicit assumptions may be alleviated, to some degree, if the assumptions are made explicitly.

This study aims to determine possible relationships between software engineers’ tendencies to make explicit assumptions
and the software development companies that the engineers work for. If reasons for making implicit assumptions are found
to be company related, ways to avoid such assumptions may be better identifi ed.

The following sections address background information on requirements engineering (RE) and assumptions made to fi ll in
incomplete requirements, as well as detailed information on the study (the research question, sample, and method), empirical
fi ndings and data analysis from a series of projects, threats to validity, and conclusion and future directions.

2. Background: RE and assumptions

This section presents background information on RE and assumptions made by software engineers in the case of incomplete
requirements.

274 International Journal of Information Studies � Volume 1 Issue 4 � October 2009

2.1 Requirements Engineering

An effective requirements process at the beginning of a project has positive outcomes throughout the project’s life cycle,
improving the effi cacy of other project processes and ultimately leading to improvements in many aspects, including in
product quality (Damian & Chisan, 2006).

 Software requirements engineering is defi ned as all the activities denoted to identify user requirements to drive additional require-
ments, document the requirements as a specifi cation, and validate the documented requirements against the actual user needs
(Saiedian & Dale, 2000). The goal of RE is to assure that an effective and high-quality product is defi ned and developed from
the stakeholders’ point of view (Dörr, Adam, Eisenbarth & Ehresman, 2008; Kujala, Kauppinen, Lehtona & Kojo, 2005). RE is
a time-consuming and expensive, but critical, phase in software (and system) development (Mannion & Keepence, 1995).

Requirements elicitation is composed of activities that enable understanding the goals, objectives, and motives for build-
ing a proposed system (Cheng & Atlee, 2007). Ways to perform successful RE activities have been studied (Davis, Dieste,
Hickey, Juristo & Moreno, 2006; Boehm, 1996; Saeidian & Dale, 2000; Willoughby, 1989) and many different techniques
and approaches related to elicitation have been determined (Hoffman and Lehner, 2001; Rowen, 1990; Llyod, Rosson &
Arthur, 1995; Subramaian, 1999).

Regardless of the type of elicitation techniques, user involvement is an important element. Kujala et al. studied the role of
user involvement in RE quality and project success and concluded that early user involvement seems to be a powerful way of
improving requirements quality and project success (Kujala, Kauppinen, Lehtona and Kojo, 2005). Better-quality requirements
can be developed when they are generated by ongoing client interaction, with a constantly improving prototype to reduce am-
biguity (Schrage, 2004; Albayrak, Albayrak & Kilic, 2009; Redondo, Arias, Martinez & Vilas, 2002). Users must be carefully
listened to and implicit assumptions must never be made (Saiedian & Dale, 2000), as such assumptions are not shared with
stakeholders and thus may increase the uncertainty of the requirements (Ebert and Man, 2005; Strens & Sugden, 1996).

Despite its importance, the “imperfect or incomplete information” problem has not been satisfactorily studied in the software
engineering literature (Noppen, Broek and Aksit, 2008). Insuffi cient attention paid to RE results in myriad problems, such
as rework, validity problems, regarding incomplete requirements (Subramanian, 1999). RE process-improvement methods
typically work with explicit process models with explicit document defi nitions (Doerr, Paech & Koehler, 2004). If incomplete
requirements are unavoidable, we should defi nitely avoid accepting them as complete by using implicit assumptions.

3. Assumptions Made by Software Engineers

We name the missing information between complete and incomplete software requirements as the “requirement gap.” When
engineers make assumptions explicitly, they are aware of which gap they fi ll and how they fi ll it. Explicit assumptions enable
engineers to share their assumptions with users.

In the case of implicit assumptions, most software engineers do not even realize that they are making assumptions. They
perceive the requirement as complete and continue software development with their perceived requirements rather than with
the users’ complete requirements. When software engineers fi ll the gaps with information not recorded and shared, and hence
not confi rmed by the user, they create virtual requirements rather than actually fi lling the gap. These virtual requirements
often result in false requirements, which may be the primary source of user change requests, rework, validity problems, and
even project failure.

Recent studies have shown some evidence that the more implicit assumptions are made by engineers the more volatile the
resulting requirements (Rowen, 1990). Albayrak et al. (Albayrak, Albayrak & Kilic, 2009) studied project-related factors, one
of many variables that may impact whether software engineers make explicit or implicit assumptions. Within the limitations
of the study, the results supported the propositions that the type of client, current phase of software development life cycle
(whether it includes an analysis phase or not), tools utilized for RE, and RE training taken during the project development
infl uence whether the engineers make explicit or implicit assumptions. According to the study results, software engineers
make more explicit, hence less implicit, assumptions when:

the client is military, •
the analysis is part of the current phase of the software development life cycle,•
the tools for RE are utilized, and•
the engineers have recently undergone RE training.•

 In addition to the aforementioned supported propositions, the study investigated whether the propositions related to project
size and existence of subcontractors was supported (Albayrak, Albayrak & Kilic, 2009). The propositions claiming that

International Journal of Information Studies � Volume 1 Issue 4 � October 2009 275

relatively larger projects have greater explicit assumptions and that the existence of subcontractors may increase the tendency
to make more explicit assumptions were not supported.

Another study aimed to determine if the ways software engineers preferred to respond to an incomplete requirement (by
prototype, pseudo code, source code), their working experience and/or their educational background impacted the type of
assumptions made (Albayrak, Kurtoglu & Bicakci, 2009). According to the results of that study, there is a signifi cant relation-
ship between the engineers’ experience and the number of explicit assumptions made. The study results also revealed that on
average, non-computer-background engineers made more explicit assumptions than computer-background graduates.

Identifying the factors that determine software engineers’ preferences for fi lling information gaps is a challenging subject to
study. Studies have been recently conducted on project-related and software-engineer-related factors (Albayrak, Bicakci &
Bozkurt, 2009; Albayrak, Albayrak & Kilic, 2009; Albayrak, Kurtoglu & Bicakci, 2009); this study observes the possible impact
of company-wide factors on the type of assumptions that software engineers make in the case of incomplete requirements.

4. The Study

This section provides the pertinent information about our experiments: The research question, the sample, and the method
used in the study.

4.1 The Research Question

The primary research question of this study is to investigate whether software engineers’ responses to incomplete require-
ments are related to company factors.

The major research question of the study was:

Is the number of explicit assumptions made by software engineers impacted by the software development company that they
currently work for?

To investigate the above question, the following hypotheses were defi ned. The null hypothesis, H10, is followed by the al-
ternative hypothesis, H1a.

H10: The number of explicit assumptions made by software engineers is impacted by the software development company
that they currently work for.

H1a: The number of explicit assumptions made by software engineers is not impacted by the software development company
that they currently work for.

We defi ne an average number of explicit assumptions made by software engineers per company as the study’s dependent
variable.

The independent variable is the software development company that an engineer worked for at the time the study was con-
ducted. None of the engineers involved in the study worked in more than one company at a time. Thus, for each participant
we had only one value for the company data.

We assume that the company may have an impact on the number of explicit assumptions made by engineers. We expect to ob-
serve such differences due to company-wide variables regarding the tendency of engineers to make explicit assumptions.

4.2 Sample and Method

In this empirical study, we conducted an experiment and collected data regarding software engineers’ preferences in com-
pleting a given defi cient software requirement [Appendix A] of Albayrak, Albayrak & Kilic, 2009. For each company, we
calculated the mean of explicit assumptions made by the engineers. During the experiment, software engineers’ access to
stakeholders was restricted.

In the study, we fi rst conducted pre-interviews with software development directors of the companies. The directors later
submitted the question used in (Albayrak, 2009), and selected project managers who directed the question to the software
engineers. The collected data was sent to us from the directors. In examining the data, we fi rst counted explicitly written
questions and assumptions as explicit assumptions. We identifi ed eight common gap types related to the given requirement.
Gap types other than those listed in (Albayrak, 2009) are found, but with very low frequency. Records including different gap
types were also counted in the experiment data. For each company, we calculated the mean of explicit assumptions made.
After compiling data collected from the software engineers, we conducted post-interviews.

276 International Journal of Information Studies � Volume 1 Issue 4 � October 2009

During the post-interviews, the possible elements regarding company factors were discussed both with the managers and with
the engineers who participated in the study. All company data was collected by the same author during the experiment.

5. Results and Analysis

Prior to conducting an ANOVA, we fi rst calculated descriptive statistics. Using descriptive statistics data and presenting
box plot analysis, we fi rst compared descriptive statistics regarding the sample data. Table 1 shows mean%, mean, sample
size N, and standard deviation of the average number of explicit assumptions made by software engineers working at the
companies involved in the study.

Engineers of companies C5 and C8 made the highest mean number of explicit assumptions, while those working at C4 and
C3 collected the minimum mean number of explicit assumptions (Table 1). Post-interviews were conducted at these four
companies.

Ci: Company Mean % Mean N Std. Deviation

C1 19 1,52 50 ,8862

C2 19,75 1,58 19 1,1698

C3 5,50 ,44 45 ,7247

C4 2,75 ,22 9 ,4410

C5 35,63 2,85 40 2,1668

C6 7,25 ,58 19 ,7685

C7 11,63 ,93 27 1,4657

C8 29,13 2,33 42 1,8033

Total 18,75 1,50 251 1,6282

 Table 1. Descriptive Statistics

The box plot in Fig.1 shows the results graphically. The thick line represents the mean value, the whiskers indicate the extreme
points excluding the outliers, and the box contains the middle 50% of the data.

We used one independent variable (company) and one dependent variable (number of explicit assumptions) in the study.
We conducted a one-way analysis of variance ANOVA to evaluate the effect of company data on the number of explicit as-
sumptions made (Table 2).

Figure 1. Company versus explicit assumptions

International Journal of Information Studies � Volume 1 Issue 4 � October 2009 277

Sum of Squares df Mean Square F Sig.

Between Groups 192.054 7 27,436 14.164 0.000

Within Groups 470.695 243 1.937

Total 1226.0 51

R Squared = 0.290 (Adjusted R Squared=0.269)

Table 2. Test of the ANOVA

The ANOVA was signifi cant: F(7,243) = 14,164 and p = 0.000. 29.0% of variance in the number of explicit assumptions
made is explained by the company factor. Findings of our study revealed that there is a signifi cant relationship between the
company and the average number of explicit assumptions made by the company’s software engineers.

The results of the post-interviews suggested that the impact caused by the company variable should be studied using different
attributes of company. Among the suggested attributes, we plan to collect data related to software development processes,
e.g. CMMI level of the companies, standards used by the company regarding software development, size of the company
and whether the company is an international establishment.

6. Threats to Validity

As with any empirical study, there are various threats to validity that must be discussed. In this section we discuss the internal and
external validities of our study. Internal validity is defi ned as the soundness of the conceptual relationships within a study.

The fi rst threat is the threat of subject characteristics (or selection bias). We selected a convenience sample. We had no con-
trol over the selection of the subjects. The specifi c subjects who participated in the study could be the major reason for the
observed results

The second threat to the internal validity of this study is the threat of data-collector characteristics. At each company, dif-
ferent collectors collected data from the subjects. The characteristics of the data collectors might have affected the results.
In addition, the data collector may have unconsciously distorted the data in such a way as to make certain outcomes more
likely, leading to a data-collector bias threat.

External validity is defi ned as the degree to which results from the study can be generalized and provide insight. The repre-
sentativeness of the artifact is a threat to external validity. We used a very simple, textbook-sample-like artifact previously
used in (Albayrak, 2009; Albayrak, Bicakci & Bozkurt, 2009; Albayrak, Albayrak & Kilic, 2009; Albayrak, Kurtoglu &
Bicakci, 2009). We selected this generic (not domain-specifi c) artifact because we wanted to make sure that all the subjects
were equally familiar with the requirement. Since it was simple, it did not take much time for the subjects to complete. The
artifact used in this study may not be refl ective of an actual requirements document. We consider using a more realistic
instrument for future studies.

The last threat is common to all empirical studies. It cannot be assumed that the results will always generalize beyond the
setting in which the study was conducted. Thus, for more confi dence in the results, the study should be replicated. After the
post-interview data analysis, we started a study to collect other attributes related to the company variable to observe if they
impact the dependent variable.

7. Conclusion and Future Studies

How gaps in software requirements are fi lled by software engineers is important, and depending on the method used, may
lead to project failure. This study focuses on the possible and not previously studied relationships between company-related
factor and use of explicit assumptions by software engineers. We construct a base for future studies looking for possible
relationships between various factors and the number of explicit assumptions made by the software engineers in the case of
incomplete requirements. We observed a signifi cant impact of company factor on the dependent variable.

Factors impacting software engineers’ preferences to fi ll gaps may not be limited to company and project-related specifi ca-
tions. Engineer-related factors, and interrelations to project- and company- related factors may also be studied in future. For
further studies, parameters of organizational and software-engineer-related characteristics may be included.

278 International Journal of Information Studies � Volume 1 Issue 4 � October 2009

In addition to functional attributes, quality attributes are also very crucial to the success of software projects (Cheng & Atlee,
2007). Further studies may also focus on incomplete quality-attributes-related requirements.

When the relationships between software engineers’ preferences in completing defi cient requirements and project-related
parameters are identifi ed, actions should be taken to prevent implicit assumptions. Building prototypes may help companies
to minimize the number of implicit assumptions made.

References

[1] Agrawal, M. and Chari, K. (2007). Software Effort, Quality, and Cycle Time:A Study of CMM Level 5 Projects, IEEE
Transactions on Software Engineering, 33(3), 145-156.

[2] Albayrak, O. (2009). Solutions to Challenges of Teaching Systems Analysis and Design for Undergraduate Software
Engineers, In System Analysis and Design for Advanced Modeling Methods: Best Practices, Akhilej Bajaj and Stanislaw
Wrycza (Eds), 68-87, IGI Global.

[3] Albayrak, O., Bicakci, M. and Bozkurt, H. (2009). A Study to Observe Relations Between Software Engineer’s Re-
sponses to Incomplete Requirements and Requirements Volatility, International Conference on Software Engineering
Theory and Practice, SETP 2009, Orlando, 1-7.

[4] Albayrak, O., Albayrak, D. and Kilic, T. (2009). Are Software Engineers’ Responses to Incomplete Requirements
Related to Project Characteristics?, Proceedings of the Second International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2009), London, 188-195.

[5] Albayrak, O., Kurtoglu, H., and Bicakci, M. (2009). Incomplete Software Requirements and Assumptions Made by
Software Engineers, The 16th Asia-Pacifi c Software Engineering Conference, (APSEC 2009), Penang, (accepted
paper).

[6] Boehm, B. (1996). Identifying Quality-requirement Confl icts, IEEE Software, 13(2), 25-35.
[7] Cheng, B.H.C. and Atlee, J.M. (2007). Research Directions in Requirements Engineering, Future of Software Engineer-

ing (FOSE ’07), IEEE 2007, 285-303.
[8] Damian, D. and Chisan, J. (2006). An Empirical Study of the Complex Relationships between Requirements Engineering

Processes and Other Processes that Lead to Payoffs in Productivity, Quality, and Risk Management, IEEE Transactions
on Software Engineering, 32(7) 433-453.

[9] Davis, A. Dieste, O, Hickey, A., Juristo, N. and Moreno, A.M. (2006). Effectiveness of Requirements Elicitation Tech-
niques: Empirical Results Derived From a Systematic Review, Proceedings of the IEEE Int. Req. Eng. Conf. (RE),
176-185.

[10] Doerr, J., Paech B., and Koehler, M. (2004). Requirements Engineering Process Improvement Based on an Informa-
tion Model, Proceedings of International Conference on Requirements Engineering (RE04), IEEE Computer Society
Press, Los Alamitos, USA, 70-79.

[11] Dörr, J., Adam, S., Eisenbarth, M., and Ehresman, M. (2008). Implementing Requirements Engineering Processes:
Using Cooperative Self-Assessment and Improvement, IEEE Software, 25(3), 71-77.

[12] Ebert, C., and Man, D. (2005). Requirements Uncertainty: Infl uencing Factors and Concrete Improvements, ICSE’05,
Proceedings of International Conference on Software Engineering, 553-560.

[13] Hoffman, H.F. and Lehner, F. (2001). Requirements Engineering as a Success Factor in Software Projects, IEEE Soft-
ware, 58-66.

[14] IEEE Std. 830-1998, IEEE Recommended Practice for Software Requirements Specifi cations, IEEE.
[15] Kamata, M.I., and Tamai, T. (2007). How Does Requirements Quality Relate to Project Success or Failure?, Proceed-

ings of the 15th International Requirements Engineering Conference, IEEE, 69-78.
[16] Kujala, S., Kauppinen, M., Lehtona, L., and Kojo, T. (2005). The Role of User Involvement in Requirements

Quality and Project Success, Proceedings of the 13th IEEE International Conference on Requirements Engineering
RE(2005), 75-84.

[17] Lloyd, W.J., Rosson, M.B., and Arthur, J.D. (2002). Effectiveness of Elicitation Techniques in Distributed Require-
ments Engineering, Proceedings of IEEE Joint International Requirements Engineering Conference on Requirements
Engineering, 311-318.

[18] Mannion, M., and Keepence, B. (2005). Smart Requirements, ACM Software Engineering Notes, 20, p.42.
[19] Noppen, J., Broek, P. and Aksit, M. (2008). Software development with imperfect information, Soft Comp, 3-28.
[20] Redondo, R.P.D., Arias, J.J.P., Martinez, A.F., and Vilas, B.B. (2002). Approximate Retrieval of Incomplete and Formal

Specifi cations Applied to Vertical Reuse, Proceedings of International Conference Software Maintenance, 618-627.

International Journal of Information Studies � Volume 1 Issue 4 � October 2009 279

[21] Rowen, R.B. (1990). Software project management under incomplete and ambiguous specifi cations, IEEE Transactions
on Engineering Management, 37(1), 10–21.

[22] Saiedian, H. and Dale, R. (2000). Requirements Engineering: Making the Connection Between the Software Developer
and Customer, Information and Software Technology, 42, 419-428.

[23] Schrage, M. (2004). Never go to a client meeting without a prototype [software prototyping], IEEE Software, 21(2),
42-45.

[24] Strens, M.R., and Sugden, R.C. (1996). Change Analysis: A Step towards Meeting the Challenge of Changing Require-
ments, Proceedings of the IEEE Symposium and Workshop on Engineering of Computer Based Systems, p.278.

[25] Subramanian, U.V. (1999). An Event, Activity and Process Based Methodology for Requirements Elicitation and Its
Application to an Educational Information System, Proceedings of the Sixth Asia Pacifi c Software Engineering Confer-
ence, (APSEC ‘99), 188-195.

[26] Willoughby, J.K. (1989). Adaptations to the Systems Engineering Management Process for Projects with Incomplete
Requirements, Proceedings of IEEE International Conference on Systems Engineering, 197-200.

[27] Yeh, R.T., and Zave, P. (1980). Specifying Software Requirements, Proceedings of the IEEE, 68(9), 1077- 1085.
[28] Zagajsek, B. Separovic, K., and Car, Z. (2007). Requirements Management Process Model for Software Development Based

on Legacy System Functionalities, 9th International Conference on Telecommunications, (ConTel 2007), 115-122.

